Open Access
Issue
E3S Web Conf.
Volume 389, 2023
Ural Environmental Science Forum “Sustainable Development of Industrial Region” (UESF-2023)
Article Number 09033
Number of page(s) 24
Section Environmental Policy and Economics
DOI https://doi.org/10.1051/e3sconf/202338909033
Published online 31 May 2023
  1. A. Alawadhi, B. Ames, C. Elder Maciel, et al., Audit analytics and continuous auditing: Looking toward the future (American Institute of Certified Public Accountants, New York, 2015) [Google Scholar]
  2. M.G. Alles, Accounting Horizons 29(2), 439–449 (2015) [CrossRef] [Google Scholar]
  3. M.G. Alles, G. Brennan, A. Kogan, M.A. Vasarhelyi, International Journal of Accounting Information Systems 7(2), 137–161 (2006) [CrossRef] [Google Scholar]
  4. M. Ashraf, P.N. Michas, D. Russomanno, The Accounting Review 95(5), 23–56 (2020) [CrossRef] [Google Scholar]
  5. Al-Ateeq, Bara’ah & Sawan, Nedal & Al-Hajaya, Krayyem & Altarawneh, Mohammad & Al-Makhadmeh, Ahmad, Corporate Governance and Organizational Behavior Review 6, 64-78 (2022) DOI: 10.22495/cgobrv6i1p5 [CrossRef] [Google Scholar]
  6. M.G. Alles, A. Kogan, M.A. Vasarhelyi, Journal of Practice & Theory 21(1), 125–138 (2002) [Google Scholar]
  7. D. Appelbaum, Journal of Emerging Technologies in Accounting 13(1), 17–36 (2016) [CrossRef] [Google Scholar]
  8. E. McAfee, Brynjolfsson, Harvard business review 90, 60-66 (2012) [Google Scholar]
  9. D. Appelbaum, A. Kogan, M.A.Vasarhelyi, Journal of Practice and Theory 36(4), 1–27 (2017) [Google Scholar]
  10. D. Balios, International Journal of Corporate Finance and Accounting, forthcoming in 7(2) (2020) [Google Scholar]
  11. D. Balios, N. Eriotis, V. Naoum, D. Vasiliou, International Journal of Managerial and Financial Accounting, forthcoming in 12(2) (2020) [Google Scholar]
  12. D. Balios, S. Tantos, International Journal of Economics and Management Engineering 13(6), 777–780 (2019) [Google Scholar]
  13. D. Balios, S. Tantos, N. Eriotis, D. Vasiliou, European Journal of Accounting, Auditing and Finance Research 8(2), 59–80 (2020) [Google Scholar]
  14. D. Balios, S. Thomadakis, E. Tsipouri, Research in International Business and Finance 38, 122-136 (2016) [CrossRef] [Google Scholar]
  15. D. Balios, T. Zaroulea, Journal of Accounting and Auditing: Research & Practice 20, 1-17 (2020) [Google Scholar]
  16. Balios, Dimitris & Kotsilaras, Panagiotis & Eriotis, Nikolaos & Vasiliou, Dimitrios. (2020). Big Data, Data Analytics and External Auditing. Journal of Modern Accounting and Auditing. 16). 10.17265/1548–6583/2020.05.002. [Google Scholar]
  17. Cao, M., Chychyla, R., & Stewart, T. (2015). Big Data Analytics in financial statement audits. Accounting Horizons, 29(2), 423–429. [CrossRef] [Google Scholar]
  18. Cao, M., Chychyla, R., & Stewart, T. (2015). Big data analytics in financial statement audits. Accounting Horizons, 29(2), 423–429. [CrossRef] [Google Scholar]
  19. Cukier, N., & Mayer-Schonberger, V. (2013). The rise of Big Data. Foreign Affairs, 92(3), 28–40. [Google Scholar]
  20. Chen CJP, Shome A, Su X. How is audit quality perceived by big 5 and local auditors in China? A preliminary investigation. Int J Aud 2001;5:157–75. [CrossRef] [Google Scholar]
  21. Curtis MB, Payne EA. An examination of contextual factors and individual characteristics affecting technology implementation decisions in auditing. Int J Acc Inf Syst 2008;9:104–21. [CrossRef] [Google Scholar]
  22. Curtis MB, Jenkins JG, Bedard JC, Deis DR. Auditors’ training and proficiency in information systems: a research synthesis. Int J Acc Info Syst 2009;9:104–21. [Google Scholar]
  23. Cao, T., Duh, R. R., Tan, H. T., & Xu, T. (2021). Enhancing Auditors’ Reliance on Data Analytics under Inspection Risk Using Fixed and Growth MindsetsEnhancing Auditors’ Reliance on Data Analytics. The Accounting Review. [Google Scholar]
  24. Daigle RJ, Kizirian T, Sneathen LDJ. Systems controls reliability and assessment effort. Int J Aud 2005;9:79–90. [CrossRef] [Google Scholar]
  25. Dowling C. Discussion of “An examination of contextual factors and individual characteristics affecting technology implementation decisions in auditing”. Int J Acc Info Syst 2008;9:122–6. [CrossRef] [Google Scholar]
  26. Dowling C, Leech S. Audit support systems and decision aids: current practice and opportunities for future research. Int J Acc Info Syst 2007;8:92–116. [CrossRef] [Google Scholar]
  27. D.J. Teece, Intangible Assets and a Theory of Heterogeneous Firms, in: Intangibles, Market Failure and Innovation Performance, Springer, 2015, pp. 217–239. [Google Scholar]
  28. Dagilienė, L., & Klovienė, L. (2019). Motivation to use Big Data and Big Data Analytics in external auditing. Managerial Auditing Journal, 34(7), 750–782. [CrossRef] [Google Scholar]
  29. Dhillon, I. S., & Modha, D. S. (2001). Concept decompositions for large sparse text data using clustering. Machine Learning, 42(1/2), 143–175. [CrossRef] [Google Scholar]
  30. De Santis, F., & D’Onza, G. (2021). Big data and data analytics in auditing: in search of legitimacy. Meditari Accountancy Research. [Google Scholar]
  31. Earley, C. E. (2015). Data analytics in auditing: Opportunities and challenges. Business Horizons, 58(5), 493–500. [CrossRef] [Google Scholar]
  32. El-Masry E, Hanson KA. Factors affecting auditors’ utilization of evidential cues: taxonomy and future research directions. Managerial Aud J 2008;23:26–50. [Google Scholar]
  33. Emett, S. A., Kaplan, S. E., Mauldin, E., & Pickerd, J. S. (2021). Auditing with data and analytics: External reviewers’ judgments of audit quality and effort. Available at SSRN 3544973. [Google Scholar]
  34. Fooladi, M., & Shukor, Z. A. (2012, December). Board of directors, audit quality and firm performance: evidence from Malaysia. In National Research & Innovation Conference for Graduate Students in Social Sciences (pp. 7–9). [Google Scholar]
  35. F. D. Davis, “A Technology Acceptance Model for Empirical Testing New End-User Information System: Theory and Results,” Massachusetts Institute of Technology, 1986. [Google Scholar]
  36. Filipek R. IT audit skills found lacking. Internal Auditor; 2007. [Google Scholar]
  37. Frankfort-Nachmias C, Nachmias D. Research methods in the social sciences. New York: St. Martin’s Press; 1996. Gartner Group. [Google Scholar]
  38. Fukukawa, H., Mock, T. J., & Srivastava, R. P. (2014). Assessing the risk of fraud at Olympus and identifying an effective audit plan. The Japanese Accounting Review, 4, 1–27. [CrossRef] [Google Scholar]
  39. Gamage, P. (2016). Big Data: Are accounting educators ready. Accounting and Management Information Systems, 15(3), 588–604. [Google Scholar]
  40. Gao, R., Huang, S., & Wang, R. (2020). Data Analytics and Audit Quality. Available at SSRN. [Google Scholar]
  41. Glover, S. M., Prawitt, D. F., & Drake, M. S. (2014). Between a rock and a hard place: A path forward for using substantive analytical procedures in auditing large P & L accounts: Commentary and analysis. Auditing: A Journal of Practice & Theory, 34(3), 161–179. [Google Scholar]
  42. Grabski, S. V., Leech, S. A., & Sangster, A. (2011). Management accountants: A profession dramatically changed by ERP systems. Chartered Institute of Management Accountants, 4(5), 1–10. [Google Scholar]
  43. G. George, M.R. Haas, A. Pentland, Big data and management, Academy of Management Journal, 57 (2014) 321–326. [CrossRef] [Google Scholar]
  44. Griffin, P. A., & Wright, A. M. (2015). Commentaries on Big Data’s importance for accounting and auditing. Accounting Horizons, 29(2), 377–379. [CrossRef] [Google Scholar]
  45. Ghosh A, Moon D. Auditor tenure and perceptions of audit quality. Acc Rev 2005;80:585–612. [CrossRef] [Google Scholar]
  46. Greenstein M, Mckee TE. Assurance practitioners’ and educators’ self-perceived IT knowledge level: an empirical assessment. Int J Acc Info Syst 2004;5:213–43. [CrossRef] [Google Scholar]
  47. Gupta, Manjul; George, Joey F. (2016). Toward the development of a big data analytics capability. Information & Management, (), S0378720616300787–. doi:10.1016/j.im.2016.07.004 [Google Scholar]
  48. Guadagnoli E, Velicer W. Relation of sample size to the stability of component patterns. Psychol Bull 1988;103:265–75. [CrossRef] [PubMed] [Google Scholar]
  49. Hall JA, Singleton T. Information technology auditing and assurance. Thomson South- Western; 2005. [Google Scholar]
  50. Hansen JV, Hill NC. Control and audit of electronic data interchange. MIS Quart 1989:402–14. [Google Scholar]
  51. Havelka D, Merhout J. Development of an information technology audit process quality framework. Am Confer Info Syst 2007;13:1–7. [Google Scholar]
  52. Havelka D, Merhout JA. Grounded theory of the information technology audit process by external auditors: using group data for grounded theory development. 1st Annual Pre-ICIS Workshop on Accounting Information Systems. Phoenix, AZ; 2009. [Google Scholar]
  53. Havelka D, Sutton SG, Arnold V. A methodology for developing measurement criteria for assurance services: an application in information systems assurance. Auditing 1998;17:73–92. [Google Scholar]
  54. Hermanson DR, Hill MC, Ivancevich DM. Information technology-related activities of internal auditors. J Info Syst 2000a;14:15. [Google Scholar]
  55. Hunton JE, Bryant SM, Bagranoff NA. Core concepts of information technology auditing. Wiley; 2004a. [Google Scholar]
  56. Holton, C. (2009). Identifying disgruntled employee systems fraud risk through text mining: A simple solution for a multi-billion dollar problem. Decision Support Systems, 46(4), 853–864. [CrossRef] [Google Scholar]
  57. Horak, J., & Boksova, J. (2017). Will the Big Data lead to the savings in overhead costs. The 11th International Days of Statistics and Economics, September 14-16, Prague, Czech Republic. [Google Scholar]
  58. Hunton JE, Wright AM, Wright S. Are financial auditors overconfident in their ability to assess risks associated with enterprise resource planning systems? [Google Scholar]
  59. J Info Syst 2004b;18:22. Hun-Tong T, Kao A. Accountability effects on auditors’ performance: the influence of knowledge, problem-solving ability, and task complexity. [Google Scholar]
  60. J Acc Res 1999;37:209–23. Jackson C. Discussions of information technology-related activities of internal auditors. J Info Syst 200014:2. [Google Scholar]
  61. Janvrin D, Bierstaker J, Lowe DJ. An investigation of factors influencing the use of computer-related audit procedures. J Info Syst 2009;23:97–118. [Google Scholar]
  62. Janvrin, D. J., & Watson, M. W. (2017). Big Data: A new twist to accounting. Journal of Accounting Education, 38, 3–8. [CrossRef] [Google Scholar]
  63. Jofre, M., & Gerlach, R. (2018). Fighting Accounting Fraud Through Forensic Data Analytics. IRPN: Innovation & Accounting (Topic). [Google Scholar]
  64. J. Chen, Y. Chen, X. Du, C. Li, J. Lu, S. Zhao, X. Zhou, Big data challenge: a data management perspective, Frontiers of Computer Science, 7 (2013) 157–164. [CrossRef] [Google Scholar]
  65. J.L. Zhao, S. Fan, D. Hu, Business challenges and research directions of management analytics in the big data era, Journal of Management Analytics, 1 (2014) 169–174. [CrossRef] [Google Scholar]
  66. J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, A.H. Byers, M.G. Institute, Big data: The next frontier for innovation, competition, and productivity, (2011). [Google Scholar]
  67. Kambatla, K., Kollias, G., Kumar, V., & Grama, A. (2014). Trends in big data analytics. Journal of parallel and distributed computing, 74(7), 2561–2573 [CrossRef] [Google Scholar]
  68. Krieger, F., Drews, P., & Velte, P. (2021). Explaining the (non-) adoption of advanced data analytics in auditing: A process theory. International Journal of Accounting Information Systems, 41, 100511. [CrossRef] [Google Scholar]
  69. Kogan, A., Alles, M., Vasarhelyi, M. A., & Wu, J. (2010). Analytical procedures for continuous data level auditing: Continuity equations. Retrieved from http://raw.rutgers.edu/docs/Innovations/Continuity%20Equations.pdf [Google Scholar]
  70. Krieger, F., Drews, P., & Velte, P. (2021). Explaining the (non-) adoption of advanced data analytics in auditing: A process theory. International Journal of Accounting Information Systems, 41, 100511. [CrossRef] [Google Scholar]
  71. Krahel, J. P., & Titera, W. R. (2015). Consequences of Big Data and formalization on accounting and auditing standards. Accounting Horizons, 29(2), 409–422. [CrossRef] [Google Scholar]
  72. Knapp M. Factors that audit committee members use as surrogates for audit quality. Aud J Pract Theory 1991;10:35–52. [Google Scholar]
  73. Kuhn JR, Sutton SG. Continuous auditing in ERP system environments: the current state and future directions. J Info Syst 2010;24: 91–112. [Google Scholar]
  74. Lampe JC, Sutton SG. Evaluating the work of internal audit: a comparison of standards and empirical evidence. Acc Bus Res 1994;24:14. Leader B. Discussion of IT assurance competencies. Int J Acc Info Syst 2004;5: 275–9. [Google Scholar]
  75. Leech TJ. Discussion of an analysis of the group dynamics surrounding internal control assessment in information systems audit and assurance domains. J Info Syst 2000;14:3. [Google Scholar]
  76. Lovata LM. Audit technology and the use of computer assisted audit techniques. J Info Syst 1990:60–8. [Google Scholar]
  77. Lowensohn S, Johnson L, Elder R, Davies S. Audit specialization, perceived audit quality, and audit fees in the local government audit market. J Acc Publ Policy 2007;26:705–32. [CrossRef] [Google Scholar]
  78. Laney, D. (2013). Big Data means big business. Gardner Inc. Retrieved from http://media.ft.com/cms/4b9c7960-2ba1-11e3-bfe2-00144feab7de.pdf [Google Scholar]
  79. Larcker, D. F., & Zakolyukina, A. A. (2012). Detecting deceptive discussions in conference calls. Journal of Accounting Research, 50(2), 495–540. [CrossRef] [Google Scholar]
  80. Lin, C. C., Chiu, A. A., Huang, S. Y., & Yen, D. C. (2015). Detecting the financial statement fraud: The analysis of the differences between data mining techniques and experts’ judgments. Knowledge-Based Systems, 89, 459–470. [CrossRef] [Google Scholar]
  81. Liu, Q. (2014). The application of exploratory data analysis in auditing (Ph.D. dissertation, Rutgers Business School, Continuous Audit and reporting Lab, Newark, NJ). [Google Scholar]
  82. Merhout J, Havelka D. Information technology auditing: a value-added IT governance partnership between IT management and audit. Comm Assoc Info Syst 2008;23:463–83 [Google Scholar]
  83. Messier WFJ, Eilifsen A, Austen LA. Auditor detected misstatements and the effect of information technology. Int J Aud 2004;8: 223–35. [CrossRef] [Google Scholar]
  84. Morris BW, Pushkin AB. Determinants of information systems audit involvement in EDI systems development. J Info Syst 1995;9:18. [Google Scholar]
  85. Momani, A. M., & Jamous, M. (2017). The evolution of technology acceptance theories. International Journal of Contemporary Computer Research (IJCCR), 1(1), 51–58. [Google Scholar]
  86. O’Donnell, R., & Partner, K. P. M. G. (2016). Data, analytics and your audit. Avaialble from https://home.kpmg.com/us/en/home/insights/2016/02/data-analytics-auditarticle. html: KPMG. [Google Scholar]
  87. O’Donnell E. Enterprise risk management: a systems-thinking framework for the event identification phase. Int J Acc Info Syst 2005;6:19. [Google Scholar]
  88. O’Donnell E. Discussion of the influence of scope and timing of reliability assurance in B2B E-commerce. Int J Acc Info Syst 2006;7:4. [Google Scholar]
  89. O’Donnell EF, Schultz Jr JJ. The influence of business-process-focused audit support software on analytical procedures judgments. Aud J Pract Theory 2003;22:265–79. [CrossRef] [Google Scholar]
  90. O’Donnell E, Arnold V, Sutton SG. An analysis of the group dynamics surrounding internal control assessment in information systems audit and assurance domains. J Info Syst 2000a;14:97. [Google Scholar]
  91. O’Donnell E, Arnold V, Sutton SG. Reply to discussions of an analysis of the group dynamics surrounding internal control assessment in information systems audit and assurance domains. J Info Syst 2000b;14:5. [Google Scholar]
  92. O’Leary D. Discussion of information system assurance for enterprise resource planning systems: unique risk considerations. J Info Syst 2002;12. [Google Scholar]
  93. Omoteso K, Patel A, Scott P. Information and communications technology and auditing: current implications and future directions. Int J Aud 2010;14:147–62. [Google Scholar]
  94. PricewaterhouseCoopers (PwC). (2015). Data driven: What students need to succeed in a rapidly changing business world. Retrieved from http://www.pwc.com/us/en/facultyresource/assets/pwc-data-driven-paper-feb2015.pdf [Google Scholar]
  95. Petterson M. The keys to effective IT auditing. J Corp Acc Finan 2005:41–7. [Google Scholar]
  96. Plumlee RD, Snowball D. Auditing your own system: some findings and implications. J Info Syst 1987:41–50. [Google Scholar]
  97. Rozario, A. M., & Issa, H. (2020). Risk-based data analytics in the government sector: A case study for a US county. Government Information Quarterly, 37(2), 101457. [CrossRef] [Google Scholar]
  98. R.L. Mitchell, 8 big trends in big data analytics, in, Computerworld, 2014. [Google Scholar]
  99. Rezaee, Z., & Wang, J. (2019). Relevance of Big Data to forensic accounting practice and education. Managerial Auditing Journal, 34(3), 268–288. [CrossRef] [Google Scholar]
  100. Rezaee, Z., Larry Crumbley, D., & Elmore, R. C. (2004). Forensic accounting education: A survey of academicians and practitioners. Advances in Accounting Education, 6, 193–231. [CrossRef] [Google Scholar]
  101. Romero, S., Gal, G., Mock, T. J., & Vasarhelyi, M. A. (2012). A measurement theory perspective on business measurement. Journal of Emerging Technologies in Accounting, 9(1), 1–24. [CrossRef] [Google Scholar]
  102. Rudolph HR, Welker RB. The effects of organizational structure on communication within audit teams. Auditing 1998;17:1–14. [Google Scholar]
  103. Salterio SE. Discussion of a methodology for developing measurement criteria for assurance services: an application in information systems assurance. Aud J Pract Theory 1998;17:93–8. [Google Scholar]
  104. Samelson D, Lowensohn S, Johnson L. The determinants of perceived audit quality and auditee satisfaction in local government. J Public Budg Acc Finan Manage 2006;18:139–66. [Google Scholar]
  105. Schroeder M, Solomon I, Vickrey D. Audit quality: the perceptions of audit auditcommittee chairpersons and audit partners. Aud J Pract Theory 1986;5:86–94. [Google Scholar]
  106. Sherer SA, Paul JW. Focusing audit testing on high risk software modules: a methodology and an application. J Info Syst 1993;7:20. [Google Scholar]
  107. Simon JL, Burstein P. Basic research methods in social science. New York: Random House, Inc.; 1985. Smith G. I.T. greatest audit and security risks of 2006. J Corp Acc Finan 2007;18: 43–8. [Google Scholar]
  108. Srivastava R, Kogan A. Assurance on XBRL instance documents: a conceptual framework of assertions. Int J Acc Info Syst 2010;11: 261–73. Stockton JL. Discussion of a methodology for developing measurement criteria for assurance services: an application in information systems assurance. Aud J Pract Theory 1998;17: 99–102. [Google Scholar]
  109. Sutton SG. Toward an understanding of the factors affecting audit quality. Decis Sci 1993;24:18. [Google Scholar]
  110. Sutton SG, Lampe JC. A framework for evaluating process quality for audit engagements. Acc Bus Res 1991;21:14. [Google Scholar]
  111. Stoel, D., Havelka, D., & Merhout, J. W. (2012). An analysis of attributes that impact information technology audit quality: A study of IT and financial audit practitioners. International Journal of Accounting Information Systems, 13(1), 60–79. [CrossRef] [Google Scholar]
  112. Stewart, T. (2015). Data analytics for financial-statement audits (Chapter 5 in AICPA, Audit Analytics and Continuous Audit: Looking Toward the Future). New York, NY: American Institute of Certified Public Accountants. [Google Scholar]
  113. Stone, E. F., Gardner, D. G., Gueutal, H. G., & McClure, S. (1983). A field experiment comparing information-privacy values, beliefs and attitudes across several types of organizations. Journal of Applied Psychology, 68(3), 459–468. [Google Scholar]
  114. S. LaValle, E. Lesser, R. Shockley, M.S. Hopkins, N. Kruschwitz, Big data, analytics and the path from insights to value, MIT Sloan Management Review, 21 (2014). [Google Scholar]
  115. Singh, N. I. T. I. N., Cheng, E. D. W. I. N., & Lai, K. H. (2017). A Data Analytics– Based Approach to Auditing. Internal Auditing, 7(8), 33–41. [Google Scholar]
  116. S. Taylor and P. A. Todd, “Assessing IT Usage: The Role of Prior Experience,” MIS Q., vol. 19, no. 4, pp. 561–570, 1995. [CrossRef] [Google Scholar]
  117. Tysiac, K. (2015). Data analytics helps auditors gain deep insight. Journal of Accountancy, 219(4), 52. [Google Scholar]
  118. Tsao, G. (2021). What are the Factors that Influence the Adoption of Data Analytics and Artificial Intelligence in Auditing?. [Google Scholar]
  119. V. Venkatesh and F. D. Davis, “A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies,” Manage. Sci., vol. 46, no. 2, pp. 186–204, 2000. [CrossRef] [Google Scholar]
  120. V. Venkatesh, M. G. Morris, G. B. Davis, and F. D. Davis, “User Acceptance of Information Technology: Toward a Unified View,” MIS Q., vol. 27, no. 3, pp. 425–478, 2003. [CrossRef] [Google Scholar]
  121. Vasarhelyi, M. A. (2008). Evolving accounting systems research with business measurement practice: A letter from the editor. Journal of Emerging Technologies in Accounting, 5(1), 1–10. [CrossRef] [Google Scholar]
  122. Vasarhelyi, M. A., Alles, M. G., & Williams, K. T. (2010). Continuous assurance for the now economy. Sydney, Australia: Institute of Chartered Accountants in Australia. [Google Scholar]
  123. Vasarhelyi, M. A., Kogan, A., & Tuttle, B. M. (2015). Big Data in accounting: An overview. Accounting Horizons, 29(2), 381–396. [CrossRef] [Google Scholar]
  124. Vasarhelyi, M., & Greenstein, M. (2003). Underlying principles of the electronization of business: A research agenda. International Journal of Accounting Information System, 4(1), 1–25. [CrossRef] [Google Scholar]
  125. Vanecek MT, Soloman I, Mannino MV. The data dictionary: an evaluation from the ECP audit perspective. MIS Quart 1983;13. [Google Scholar]
  126. Vendrzyk VP, Bagranoff NA. The evolving role of IS audit: a field study comparing the perceptions of IS and financial auditors. Adv Acc 2003;20:141–63. [CrossRef] [Google Scholar]
  127. Watkins AL, Hillison W, Morecroft SE. Audit quality: a synthesis of theory and empirical evidence. J Acc Lit 2004;23:153–93. [Google Scholar]
  128. Wright S, Wright AM. Information system assurance for enterprise resource planning systems: unique risk considerations. J Info Syst 2002:99–115 [Google Scholar]
  129. Wang, J., Lee, G., & Crumbley, L. (2016). Current availability of forensic accounting education and state of forensic accounting services in Hong Kong and mainland China. Journal of Forensic and Investigative Accounting, 8(3), 515–534. [Google Scholar]
  130. Wang, T., & Cuthbertson, R. (2015). Eight issues on audit data analytics we would like researched. Journal of Information Systems, 29(1), 155–162. [CrossRef] [Google Scholar]
  131. Watkins, A. L., Hillison, W., & Morecroft, S. E. (2004). Audit quality: A synthesis of theory and empirical evidence. Journal of accounting literature, 23, 153. [Google Scholar]
  132. Warren, J. D., Moffitt, K. C., & Byrnes, P. (2015). How Big Data will change accounting. Accounting Horizons, 29(2), 397–407. [CrossRef] [Google Scholar]
  133. Yoon, K., Hoogduin, L., & Zhang, L. (2015). Big Data as complementary audit evidence. Accounting Horizons, 29(2), 431–438. [CrossRef] [Google Scholar]
  134. Yang, C. H., & Lee, K. C. (2020). Developing a strategy map for forensic accounting with fraud risk management: An integrated balanced scorecard-based decision model. Evaluation and program planning, 80, 101780. [CrossRef] [PubMed] [Google Scholar]
  135. Zhang, J., Yang, X., & Appelbaum, D. (2015). Toward effective big data analysis in continuous auditing. Accounting Horizons, 29(2), 469–476. [CrossRef] [Google Scholar]
  136. Zhang, J., Yang, X., & Appelbaum, D. (2015). Toward effective Big Data analysis in continuous auditing. Accounting Horizons, 29(2), 469–476. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.