Open Access
Issue |
E3S Web Conf.
Volume 391, 2023
4th International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2023)
|
|
---|---|---|
Article Number | 01014 | |
Number of page(s) | 20 | |
DOI | https://doi.org/10.1051/e3sconf/202339101014 | |
Published online | 05 June 2023 |
- S. Gwidon, Wear: materials, mechanisms and practice. Wiley, 2005. [Google Scholar]
- Z. Jin and J. Fisher, “Tribology in joint replacement,” Jt. Replace. Technol., pp. 31–61, Jan. 2014. [CrossRef] [Google Scholar]
- W. Zhai et al., “Recent Progress on Wear-Resistant Materials: Designs, Properties, and Applications,” Adv. Sci., vol. 8, no. 11, p. 2003739, Jun. 2021. [CrossRef] [Google Scholar]
- B. Swain, S. Bhuyan, and R. Behera, “Wear : A Serious Problem in Industry,” no. December, 2020. [Google Scholar]
- A. Tsujimoto et al., “Wear of resin composites: Current insights into underlying mechanisms, evaluation methods and influential factors,” Jpn. Dent. Sci. Rev., vol. 54, no. 2, pp. 76–87, May 2018. [CrossRef] [Google Scholar]
- K. Kato, “Classification of wear mechanisms/models,” Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., vol. 216, no. 6, pp. 349–356, 2002. [CrossRef] [Google Scholar]
- A. Sethuramiah and R. Kumar, “Dry Wear Mechanisms and Modeling,” Model. Chem. Wear, pp. 41–68, Jan. 2016. [CrossRef] [Google Scholar]
- L. O. A. Affonso, “Wear,” in Machinery Failure Analysis Handbook, Gulf Publishing Company, 2006, pp. 55–82. [CrossRef] [Google Scholar]
- S. K. Choudhury and S. Chinchanikar, “1.3 Finish Machining of Hardened Steel,” Compr. Mater. Finish., vol. 1-3, pp. 47–92, Jan. 2017. [CrossRef] [Google Scholar]
- L. Pokrajac et al., “Nanotechnology for a Sustainable Future: Addressing Global Challenges with the International Network4Sustainable Nanotechnology,” ACS Nano, vol. 15, no. 12, pp. 18608–18623, Dec. 2021. [CrossRef] [PubMed] [Google Scholar]
- Y. Chen, P. Renner, and H. Liang, “Dispersion of Nanoparticles in Lubricating Oil: A Critical Review,” Lubr. 2019, Vol. 7, Page 7, vol. 7, no. 1, p. 7, Jan. 2019. [CrossRef] [Google Scholar]
- T. Sampath, S. Thamizharasan, M. Saravanan, and P. S. Timiri Shanmugam, “Materials testing,” Trends Dev. Med. Devices, pp. 77–96, Jan. 2020. [CrossRef] [Google Scholar]
- P. Azhagarsamy, K. Sekar, and K. P. Murali, “Nickel Aluminide intermetallic composites fabricated by various processing routes-a review,” Mater. Sci. Technol. (United Kingdom), vol. 38, no. 9, pp. 556–571, 2022. [CrossRef] [Google Scholar]
- P. Sakthivel and G. P. Rajamani, “A Review of surface hardness improvement techniques for wind turbine gears,” Trans. Eng. Sci., vol. 4, no. 4, 2016. [Google Scholar]
- W. D. Callister and D. G. Rethwisch, “What is Carbon Steel - Plain Carbon Steel - Definition,” Mater. Sci. Eng., p. 960, 2022. [Google Scholar]
- S. V. Johnston and S. V. Hainsworth, “Effect of DLC coatings on wear in automotive applications,” Surf. Eng., vol. 21, no. 1, pp. 67–71, 2005. [CrossRef] [Google Scholar]
- R. Ranjith, P. K. Giridharan, J. Devaraj, and V. Bharath, “Influence of titanium- coated (B4Cp + SiCp) particles on sulphide stress corrosion and wear behaviour of AA7050 hybrid composites (for MLG link),” J. Aust. Ceram. Soc., vol. 53, no. 2, pp. 1017–1025, Oct. 2017. [CrossRef] [Google Scholar]
- K. Holmberg and A. Erdemir, “Influence of tribology on global energy consumption, costs and emissions,” Friction, vol. 5, no. 3, pp. 263–284, Sep. 2017. [CrossRef] [Google Scholar]
- J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler, and T. M. Pollock, “3D printing of high-strength aluminium alloys,” Nat. 2017 5497672, vol. 549, no. 7672, pp. 365–369, Sep. 2017. [CrossRef] [PubMed] [Google Scholar]
- L. A. Teran et al., “Failure analysis of a run-of-the-river hydroelectric power plant,” Eng. Fail. Anal., vol. 68, pp. 87–100, Oct. 2016. [CrossRef] [Google Scholar]
- P. Lopez Jornet et al., “Metallic ions released from stainless steel, nickel-free, and titanium orthodontic alloys: toxicity and DNA damage,” Elsevier 2014. [Google Scholar]
- Y. Singh, A. Farooq, A. Raza, M. A. Mahmood, and S. Jain, “Sustainability of a non-edible vegetable oil based bio-lubricant for automotive applications: A review,” Process Saf. Environ. Prot., vol. 111, pp. 701–713, Oct. 2017. [CrossRef] [Google Scholar]
- I. D. Marinescu, W. B. Rowe, B. Dimitrov, and I. Inasaki, “Process Fluids for Abrasive Machining,” in Tribology of Abrasive Machining Processes, William Andrew Publishing, 2004, pp. 531–585. [CrossRef] [Google Scholar]
- H. P. Bloch and K. Bannister, Practical Lubrication for Industrial Facilities, Third Edition. River Publishers, 2020. [CrossRef] [Google Scholar]
- N. W. M. Zulkifli, M. A. Kalam, H. H. Masjuki, M. Shahabuddin, and R. Yunus, “Wear prevention characteristics of a palm oil-based TMP (trimethylolpropane) ester as an engine lubricant,” Energy, vol. 54, pp. 167–173, Jun. 2013. [CrossRef] [Google Scholar]
- A. Tomala, A. Karpinska, W. S. M. Werner, A. Olver, and H. Störi, “Tribological properties of additives for water-based lubricants,” Wear, vol. 269, no. 11-12, pp. 804–810, Oct. 2010. [CrossRef] [Google Scholar]
- J. R. Lince, “Effective Application of Solid Lubricants in Spacecraft Mechanisms,” Lubr. 2020, vol. 8, Page 74, vol. 8, no. 7, p. 74, Jul. 2020. [CrossRef] [Google Scholar]
- D. Berman, A. Erdemir, and A. V. Sumant, “Graphene: a new emerging lubricant,” Mater. Today, vol. 17, no. 1, pp. 31–42, Jan. 2014. [CrossRef] [Google Scholar]
- I. Velkavrh, F. Ausserer, S. Klien, J. Brenner, P. Forêt, and A. Diem, “The effect of gaseous atmospheres on friction and wear of steel-steel contacts,” Tribol. Int., vol. 79, pp. 99–110, Nov. 2014. [CrossRef] [Google Scholar]
- M. A. Abdullah, S. A. Saleman, N. Tamaldin, and M. S. Suhaimi, “Reducing wear and friction by means of lubricants mixtures,” Procedía Eng., vol. 68, no. December, pp. 338–344, 2013. [CrossRef] [Google Scholar]
- R. Greenberg, G. Halperin, I. Etsion, and R. Tenne, “The Effect of WS2 Nanoparticles on Friction Reduction in Various Lubrication Regimes,” Tribol. Lett. 2004 172, vol. 17, no. 2, pp. 179–186, Aug. 2004. [CrossRef] [Google Scholar]
- D. Sundeep, S. D. Ephraim, and N. Satish, “Use of Nanotechnology in Reduction of Friction and Wear,” Int. J. Innov. Res. Adv. Eng., vol. 1, no. 8, pp. 1–7, 2014. [Google Scholar]
- H. Chang, C. W. Lan, C. H. Chen, M. J. Kao, and J. Bin Guo, “Anti-wear and friction properties of nanoparticles as additives in the lithium grease,” Int. J. Precis. Eng. Manuf 2014 1510, vol. 15, no. 10, pp. 2059–2063, Oct. 2014. [CrossRef] [Google Scholar]
- H. Liu, H. Liu, C. Zhu, and R. G. Parker, “Effects of lubrication on gear performance: A review,” Mech. Mach. Theory, vol. 145, p. 103701, Mar. 2020. [CrossRef] [Google Scholar]
- Harold Tucker, “Principles of aircraft engine lubrication,” Aug-1998. [Google Scholar]
- G. Miranda, “An Introduction to the Lubricants Used in the Aerospace Industry,” Aug-2019. [Google Scholar]
- B. Bhattacharyya and B. Doloi, Modern machining technology: Advanced, hybrid, micro machining and super finishing technology. Elsevier, 2019. [Google Scholar]
- S. Sivarajan and R. Padmanabhan, “Green Machining and Forming by the use of Surface coated tools,” Procedia Eng., vol. 97, pp. 15–21, Jan. 2014. [CrossRef] [Google Scholar]
- P. Krajnik and F. Hashimoto, “Finishing,” CIRP Encycl. Prod. Eng., pp. 1–9, 2018. [Google Scholar]
- Kazanas H.C. and Lowell P. Lerwick, “Manufacturing Processes Technology,” Adv. Mater. Res., vol. 189-193, pp. 95–119, Jan. 2003. [Google Scholar]
- P. Scallan, “Material evaluation and process selection,” in Process Planning, Butterworth-Heinemann, 2003, pp. 109–170. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.