Open Access
Issue
E3S Web Conf.
Volume 391, 2023
4th International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2023)
Article Number 01046
Number of page(s) 14
DOI https://doi.org/10.1051/e3sconf/202339101046
Published online 05 June 2023
  1. Garba M.D., Usman M., Khan S., Shehzad F., Galadima A., Ehsan M.F., et al. CO2 towards fuels: A review of catalytic conversion of Carbon dioxide to hydrocarbons. Journal of Environmental Chemical Engineering 104756, (2020). https://doi.org/10.1016/j.jece.2020.104756 [Google Scholar]
  2. Pires da Mata Costa, L., Micheline Vaz de Miranda, D., Couto de Oliveira A.C., Falcon, L., Stella Silva Pimenta, M., Guilherme Bessa, I., et al. Capture and reuse of Carbon dioxide (CO2) for a plastics circular economy: A review. Processes, 9(5), 759, (2021). https://doi.org/10.3390/pr9050759 [CrossRef] [Google Scholar]
  3. US Dept. of Energy. Argonne National Laboratory Report: A Full Fuel-Cycle Analysis of Energy and Emissions Impacts of Transportation Fuels Produced from Natural Gas, (1999). https://doi.org/10.2172/750803 [Google Scholar]
  4. Alvarez R.A., Pacala S.W., Winebrake J.J., Chameides W.L., & Hamburg S.P. Greater focus needed on methane leakage from natural gas infrastructure. Proceedings of the National Academy of Sciences 109(17), 6435–6440, (2012). https://doi.org/10.1073/pnas.1202407109 [CrossRef] [PubMed] [Google Scholar]
  5. Golombok M., & Nikolic, D. Assessing contaminated gas. E&P, 73, (2008). [Google Scholar]
  6. Okan M., Aydin H.M., & Barsbay M. Current approaches to waste polymer utilization and minimization: a review. Journal of Chemical Technology & Biotechnology, 94(1), 8–21, (2019). https://doi.org/10.1002/jctb.5778 [CrossRef] [Google Scholar]
  7. The Ellen MacArthur Foundation. The New Plastics Economy: Rethinking the Future of Plastics & Catalysing Action. Available online: https://www.ellenmacarthurfoundation.org/publications/the-new-plastics-economy-rethinking-the-future-of-plasticscatalysing-action (accessed on 21 May 2020). [Google Scholar]
  8. Report Linker COVID-19 Impact on Packaging Market by Material Type, Application and Region—Global Forecast to 2021. Available online: https://www.prnewswire.com/news-releases/covid-19-impact-on-packaging-market-by-material-typeapplication-and-region—global-forecast-to-2021-301056485.html (accessed on 1 March 2021). [Google Scholar]
  9. Keller F. Lee R.P. Meyer B. Life. Cycle Assessment of Global Warming Potential, Resource Depletion and Acidification Potential of Fossil, Renewable and Secondary Feedstock for Olefin Production in Germany. J. Clean. Prod., 250, 119484, (2020). https://doi.org/10.1016/j.jclepro.2019.119484 [CrossRef] [Google Scholar]
  10. Zheng J. Suh S. Strategies to Reduce the Global Carbon Footprint of Plastics. Nat. Clim. Chang, 9, 374–378, (2019). https://doi.org/10.1038/s41558-019-0459-z [CrossRef] [Google Scholar]
  11. Murcia Valderrama M.A., van Putten R.J., Gruter, G.J.M. The Potential of Oxalic—and Glycolic Acid Based Polyesters (Review). Towards CO2 as a Feedstock (Carbon Capture and Utilization—CCU). Eur. Polym. J., 119, 445–468, (2019). https://doi.org/10.1016/j.eurpolymj.2019.07.036 [CrossRef] [Google Scholar]
  12. Thunman H. Berdugo Vilches, T. Seemann, M. Maric, J. Vela I.C. Pissot, S., et al. Circular Use of Plastics Transformation of Existing Petrochemical Clusters into Thermochemical Recycling Plants with 100% Plastics Recovery. Sustain. Mater. Technol, 22, e00124, (2019). https://doi.org/10.1016/j.susmat.2019.e00124 [Google Scholar]
  13. Machado C.F.R. Araújo O.D.Q.F., de Medeiros J.L., de Brito Alves R.M. Carbon dioxide and Ethanol from Sugarcane Biorefinery as Renewable Feedstocks to Environment- Oriented Integrated Chemical Plants. J. Clean. Prod., 172, 1232–1242, (2018). https://doi.org/10.1016/j.jclepro.2017.10.234 [CrossRef] [Google Scholar]
  14. Ren T., Patel M. Blok K. Olefins from Conventional and Heavy Feedstocks. Energy Use in Steam Cracking and Alternative Processes. Energy. 31, 425–451, (2020). https://doi.org/10.1016/j.energy.2005.04.001 [Google Scholar]
  15. Amghizar I. Dedeyne J.N. Brown, D.J.; Marin, G.B.; Van Geem, K.M. Sustainable Innovations in Steam Cracking: CO2 Neutral Olefin Production. React. Chem. Eng. 5, 239–257, (2020). https://doi.org/10.1039/C9RE00398C [Google Scholar]
  16. Pappijn, C.A.R. Ruitenbeek, M.; Reyniers M.F. Van Geem, K.M. Challenges and Opportunities of Carbon Capture and Utilization: Electrochemical Conversion of CO2 to Ethylene. Front. Earth Sci. 8, 1—12, (2020). https://doi.org/10.3389/fenrg.2020.557466 [CrossRef] [Google Scholar]
  17. Friedlingstein P., Jones M.W., O'Sullivan M., Andrew R.M., Bakker D.C.K., Hauck J. Global carbon budget 2021. Earth System Science Data Discussions, 1–191, (2021). https://doi.org/10.5194/essd-14-1917-2022 [Google Scholar]
  18. Hoppe, W., Thonemann, N., & Bringezu, S. Life cycle assessment of Carbon dioxidebased production of methane and methanol and derived polymers. Journal of Industrial Ecology, 22(2), 327–340, (2018). https://doi.org/10.1111/jiec.12583 [CrossRef] [Google Scholar]
  19. Haifeng X.U., Yang L.I., & Huang H. Spatial research on the effect of financial structure on CO2 emission. Energy Procedia, 118, 179–183, (2017). https://doi.org/10.1016/j.egypro.2017.07.037 [CrossRef] [Google Scholar]
  20. Wei J., Ge Q., Yao R., Wen Z., Fang C., Guo L., et al. Directly converting CO2 into a gasoline fuel. Nature communications, 8(1), 1–9, (2017). https://doi.org/10.1038/ncomms15174 [CrossRef] [Google Scholar]
  21. Wang Z., Ren T., & Cheng Y. Numerical investigations of methane flow characteristics on a longwall face Part I: Methane emission and base model results. Journal of Natural Gas Science and Engineering, 43, 242–253, (2017). https://doi.org/10.1016/jjngse.2017.03.029 [CrossRef] [Google Scholar]
  22. Khan S., Khulief Y.A., & Al-Shuhail, A. Mitigating climate change via CO2 sequestration into Biyadh reservoir: geomechanical modeling and caprock integrity. Mitigation and adaptation strategies for global change, 24(1), 23–52, (2019). https://doi.org/10.1007/s11027-018-9792-1 [CrossRef] [Google Scholar]
  23. Khan, S., Khulief Y.A., & Al-Shuhail A.A. The effect of injection well arrangement on CO2 injection into carbonate petroleum reservoir. International Journal of Global Warming, 14(), 462–487, (2018). [CrossRef] [Google Scholar]
  24. Shukla J.B., Verma M., & Misra A.K. Effect of global warming on sea level rise: A modeling study. Ecological Complexity, 32, 99–110, (2017). https://doi.org/10.1016/j.ecocom.2017.10.007 [CrossRef] [Google Scholar]
  25. Prasad P.V.V., Thomas J.M.G., & Narayanan S. Global warming effects Encyclopedia of applied plant sciences, (2017). [Google Scholar]
  26. Bong C.P.C., Lim L.Y., Ho W.S., Lim J.S., Klemes J.J., Towprayoon S., et al. A review on the global warming potential of cleaner composting and mitigation strategies. Journal of Cleaner Production 146, 149–157, (2017). https://doi.org/10.1016/j.jclepro.2016.07.066 [CrossRef] [Google Scholar]
  27. Anderson T.R., Hawkins E., & Jones P.D. CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour, 40(3), 178–187, (2016). https://doi.org/10.1016/j.endeavour.2016.07.002 [CrossRef] [Google Scholar]
  28. Ansaloni L., Alcock B., & Peters T.A. Effects of CO2 on polymeric materials in the CO2 transport chain: A review. International Journal of Greenhouse Gas Control, 94, 102930, (2020). https://doi.org/10.1016/jjjggc.2019.102930 [CrossRef] [Google Scholar]
  29. Agenda I. 2016, January. The New Plastics Economy Rethinking the future of plastics. In World Economic Forum (p. 36). [Google Scholar]
  30. Hahladakis J.N., & Iacovidou E. Closing the loop on plastic packaging materials: What is quality and how does it affect their circularity? Science of the total environment, 630, 1394–1400, (2018). https://doi.org/10.1016/j.scitotenv.2018.02.330 [CrossRef] [Google Scholar]
  31. Rahimi A., & García J.M. Chemical recycling of waste plastics for new materials production. Nature Reviews Chemistry, 1(6), 1–11, (2017). https://doi.org/10.1038/s41570-017-0046 [CrossRef] [Google Scholar]
  32. Shams M., Alam I., & Mahbub M.S. Plastic pollution during COVID-19: Plastic waste directives and its long-term impact on the environment. Environmental advances, 5, 100119, (2021). https://doi.org/10.1016Zj.envadv.2021.100119 [CrossRef] [Google Scholar]
  33. Leung D.Y., Caramanna G., & Maroto-Valer M.M. An overview of current status of Carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426–443, (2014). https://doi.org/10.1016/j.rser.2014.07.093 [CrossRef] [Google Scholar]
  34. Olajire A.A. CO2 capture and separation technologies for end-of-pipe applications-a review. Energy, 35(6), 2610–2628, (2010). https://doi.org/10.1016/j.energy.2010.02.030 [CrossRef] [Google Scholar]
  35. Demessence A., D’Alessandro D.M., Foo M.L. & Long J.R. Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. Journal of the American Chemical Society, 131(25), 8784–8786, (2009). https://doi.org/10.1021/ja903411w [CrossRef] [PubMed] [Google Scholar]
  36. Indira V., & Abhitha, K. March. A review on polymer based adsorbents for CO2 capture. In IOP Conference Series: Materials Science and Engineering, (Vol. 1114, No. 1, p. 012081), (2021). IOP Publishing. https://iopscience.iop.org/article/10.1088/1757-899X/1114/1/012081/pdf [CrossRef] [Google Scholar]
  37. Yuan X., Lee J.G., Yun H., Deng S., Kim Y.J., Lee J.E., et al. Solving two environmental issues simultaneously: Waste polyethylene terephthalate plastic bottle-derived microporous carbons for capturing CO2. Chemical Engineering Journal 397, 125350, (2020). https://doi.org/10.1016/j.cej.2020.125350 [CrossRef] [Google Scholar]
  38. De Ras K., Van de Vijver, R., Galvita V.V., Marin G.B., & Van Geem K.M. Carbon capture and utilization in the steel industry: challenges and opportunities for chemical engineering. Current Opinion in Chemical Engineering, 26, 81–87, (2019). https://doi.org/10.1016/j.coche.2019.09.001 [CrossRef] [Google Scholar]
  39. Tan Y., Nookuea W., Li H., Thorin E., & Yan J. Property impacts on Carbon Capture and Storage (CCS) processes: A review. Energy Conversion and Management, 118, 204–222, (2016). https://doi.org/10.1016/j.enconman.2016.03.079 [CrossRef] [Google Scholar]
  40. Jiang L., Roskilly A.P., & Wang R.Z. Performance exploration of temperature swing adsorption technology for Carbon dioxide capture. Energy Conversion and Management, 165, 396–404, (2018). https://doi.org/10.1016/j.enconman.2018.03.077 [CrossRef] [Google Scholar]
  41. Jiang L., Gonzalez-Diaz A., Ling-Chin J., Malik A., Roskilly A.P., & Smallbone A.J. PEF plastic synthesized from industrial Carbon dioxide and biowaste. Nature Sustainability, 3(9), 761–767, (2020). https://doi.org/10.1038/s41893-020-0549-y [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.