Open Access
Issue
E3S Web Conf.
Volume 391, 2023
4th International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2023)
Article Number 01116
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/202339101116
Published online 05 June 2023
  1. S. Shamim, & A. Vikram, (2023). Experimental study on usage of (PET) waste plastic incorporating with (TIO2) titanium dioxide for the construction of plastic roads. Materials Today: Proceedings. [Google Scholar]
  2. C. Abdy, Y. Zhang, J. Wang, Y. Yang, I. Artamendi, & B. Allen. (2022). Pyrolysis of polyolefin plastic waste and potential applications in asphalt road construction: A technical review. Resources, conservation and recycling, 180, 106213. [CrossRef] [Google Scholar]
  3. S. Bansal, S.S. Kushwah, A. Garg, & K. Sharma. (2023). Utilization of plastic waste in construction industry in India-A review. Materials Today: Proceedings. [Google Scholar]
  4. H.S. Parihar, & M. Verma. (2021). Low compressive potency DS-dune sand utilizing PW-plastic waste for the construction of roads. Materials Today: Proceedings, 45, 3005–3009. [CrossRef] [Google Scholar]
  5. J.K. Appiah, V.N. Berko-Boateng, & T.A. Tagbor. (2017). Use of waste plastic materials for road construction in Ghana. Case studies in construction materials, 6, 1–7. [CrossRef] [Google Scholar]
  6. A.L. Merchan, T. Fischöder, J. Hee, M.S. Lehnertz, O. Osterthun, S. Pielsticker, & R. Palkovits. (2022). Chemical recycling of bioplastics: technical opportunities to preserve chemical functionality as path towards a circular economy. Green Chemistry, 24(24), 9428–9449. [CrossRef] [Google Scholar]
  7. J. Lu, S.Y. Jiang, J. Chen, C.H. Lee, Z. Cai, & H.D. Ruan. (2023). Fabrication of Superhydrophobic Soil Stabilizers Derived from Solid Wastes Applied for Road Construction: A Review. Transportation Geotechnics, 100974. [CrossRef] [Google Scholar]
  8. M. Jawaid, B. Singh, L.K. Kian, S.A. Zaki, & A.M. Radzi. (2023). Processing Techniques on Plastic Waste Materials for Construction and Building Applications. Current Opinion in Green and Sustainable Chemistry, 100761. [CrossRef] [Google Scholar]
  9. F. Russo, C. Oreto, & R. Veropalumbo. (2022). Promoting resource conservation in road flexible pavement using jet grouting and plastic waste as filler. Resources, Conservation and Recycling, 187, 106633. [CrossRef] [Google Scholar]
  10. J. Nyika, & M. Dinka. (2022). Recycling plastic waste materials for building and construction Materials: A minireview. Materials Today: Proceedings, 62, 3257–3262. [CrossRef] [Google Scholar]
  11. S. Suchithra, S. Oviya, S.R. Rethinam, & P. Monisha. (2022). Production of paver block using construction demolition waste and plastic waste-A critical review. Materials Today: Proceedings. [Google Scholar]
  12. S. Amena. (2022). Utilizing solid plastic wastes in subgrade pavement layers to reduce plastic environmental pollution. Cleaner Engineering and Technology, 7, 100438. [CrossRef] [Google Scholar]
  13. A. Beyene, Y. Tesfaye, D. Tsige, A. Sorsa, T. Wedajo, N. Tesema, & G. Mekuria. (2022). Experimental study on potential suitability of natural lime and waste ceramic dust in modifying properties of highly plastic clay. Heliyon, 8(10), e10993. [CrossRef] [PubMed] [Google Scholar]
  14. L. Yao, Z. Leng, J. Lan, R. Chen, & J. Jiang. (2022). Environmental and economic assessment of collective recycling waste plastic and reclaimed asphalt pavement into pavement construction: A case study in Hong Kong. Journal of Cleaner Production, 336, 130405. [CrossRef] [Google Scholar]
  15. M.B. Genet, Z.B. Sendekie, & A.L. Jembere. (2021). Investigation and optimization of waste LDPE plastic as a modifier of asphalt mix for highway asphalt: Case of Ethiopian roads. Case Studies in Chemical and Environmental Engineering, 4, 100150. [CrossRef] [Google Scholar]
  16. E.N. Kalali, S. Lotfian, M.E. Shabestari, S. Khayatzadeh, C. Zhao, & H.Y. Nezhad. (2023). A critical review of the current progress of plastic waste recycling technology in structural materials. Current Opinion in Green and Sustainable Chemistry, 100763. [CrossRef] [Google Scholar]
  17. H. Mumtaz, S. Sobek, S. Werle, M. Sajdak, & R. Muzyka. (2023). Hydrothermal treatment of plastic waste within a circular economy perspective. Sustainable Chemistry and Pharmacy, 32, 100991. [CrossRef] [Google Scholar]
  18. L. Yao, Z. Leng, J. Lan, R. Chen, & J. Jiang. (2022). Environmental and economic assessment of collective recycling waste plastic and reclaimed asphalt pavement into pavement construction: A case study in Hong Kong. Journal of Cleaner Production, 336, 130405. [CrossRef] [Google Scholar]
  19. T.A. Tagbor, L. Mohammed, M. Mohammed, M.M. Bruce-Mensah, S. Tekpetey, E.A. Armoo, E. A, & M.S. Kirghiz. (2022). The utilization of palm kernel shells and waste plastics in asphaltic mix for sustainable pavement construction. Scientific African, 16, e01277. [CrossRef] [Google Scholar]
  20. N. Li, H. Liu, Z. Cheng, B. Yan, G. Chen, & S. Wang. (2022). Conversion of plastic waste into fuels: A critical review. Journal of Hazardous Materials, 424, 127460. [CrossRef] [PubMed] [Google Scholar]
  21. L. Li, J. Zuo, X. Duan, S. Wang, K. Hu, & R. Chang. (2021). Impacts and mitigation measures of plastic waste: A critical review. Environmental Impact Assessment Review, 90, 106642. [CrossRef] [Google Scholar]
  22. I.G. Lopes, J.W. Yong, & C. Lalander. (2022). Frass derived from black soldier fly larvae treatment of biodegradable wastes. A critical review and future perspectives. Waste Management, 142, 65–76. [CrossRef] [Google Scholar]
  23. S.V. Mohan, G.N. Nikhil, P. Chiranjeevi, C.N. Reddy, M.V. Rohit, A.N. Kumar, & O. Sarkar. (2016). Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresource technology, 215, 2–12. [CrossRef] [PubMed] [Google Scholar]
  24. T.H. Tsui, & J.W. Wong. (2019). A critical review: emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management. Waste Disposal & Sustainable Energy, 1, 151–167. [CrossRef] [Google Scholar]
  25. R.X. Yang, K. Jan, C.T. Chen, W.T. Chen, & K.C.W. Wu. (2022). Thermochemical conversion of plastic waste into fuels, chemicals, and value-added materials: A critical review and outlooks. ChemSusChem, 15(11), e202200171. [PubMed] [Google Scholar]
  26. L. Pires Costa, D.M. Vaz de Miranda, & J.C. Pinto. (2022). Critical Evaluation of Life Cycle Assessment Analyses of Plastic Waste Pyrolysis. ACS Sustainable Chemistry & Engineering, 10(12), 3799–3807. [CrossRef] [Google Scholar]
  27. P.O. Awoyera, & A. Adesina. (2020). Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, 12, e00330. [CrossRef] [Google Scholar]
  28. P. Lomwongsopon, & C. Varrone. (2022). Critical Review on the Progress of Plastic Bioupcycling Technology as a Potential Solution for Sustainable Plastic Waste Management. Polymers, 14(22), 4996. [CrossRef] [PubMed] [Google Scholar]
  29. M. Enfrin, R. Myszka, & F. Giustozzi. (2022). Paving roads with recycled plastics: Microplastic pollution or eco-friendly solution?. Journal of Hazardous Materials, 437, 129334. [CrossRef] [PubMed] [Google Scholar]
  30. A. Arulrajah, S. Perera, Y.C. Wong, F. Maghool, & S. Horpibulsuk. (2021). Stabilization of PET plastic-demolition waste blends using fly ash and slag-based geopolymers in light traffic road bases/subbases. Construction and Building Materials, 284, 122809. [CrossRef] [Google Scholar]
  31. N. Sakthipriya. (2022). Plastic waste management: A road map to achieve circular economy and recent innovations in pyrolysis. Science of The Total Environment, 809, 151160. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.