Open Access
Issue |
E3S Web Conf.
Volume 391, 2023
4th International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2023)
|
|
---|---|---|
Article Number | 01126 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/202339101126 | |
Published online | 05 June 2023 |
- Sun, T., et al., Antioxidant activities of different colored sweet bell peppers (Capsicum annuum L.). Journal of Food Science, 2007. 72(2): p. S98–S102. [CrossRef] [PubMed] [Google Scholar]
- Cadenas, E. and L. Packer, Handbook of antioxidants. Vol. 712. 2002: Marcel Dekker New York. [Google Scholar]
- Sies, H., Antioxidants in Diseases Mecanism and Therapy Academic Press. New York, NY, USA, 1996. [Google Scholar]
- Oboh, G. and J. Rocha, Hot Pepper (Capsicum spp.) protects brain from sodium nitroprusside-and quinolinic acid-induced oxidative stress in vitro. Journal of medicinal food, 2008. 11(2): p. 349–355. [CrossRef] [PubMed] [Google Scholar]
- Jain, D., et al., Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Digest journal of nanomaterials and biostructures, 2009. 4(3): p. 557–563. [Google Scholar]
- Jiang, Z.-J., C.-Y. Liu, and L.-W. Sun, Catalytic properties of silver nanoparticles supported on silica spheres. The Journal of Physical Chemistry B, 2005. 109(5): p. 1730–1735. [CrossRef] [PubMed] [Google Scholar]
- Salman, A. T., Ismail, A. H., Rheima, A. M., Abd, A. N., Habubi, N. F., & Abbas, Z. S. (2021, March). Nano-Synthesis, characterization and spectroscopic Studies of chromium (III) complex derived from new quinoline-2-one for solar cell fabrication. In Journal of Physics: Conference Series (Vol. 1853, No. 1, p. 012021). IOP Publishing. [CrossRef] [Google Scholar]
- Moulin, E., et al., Thin-film silicon solar cells with integrated silver nanoparticles. Thin solid films, 2008. 516(20): p. 6813–6817. [CrossRef] [Google Scholar]
- Aziz, S. N., Al Marjani, M. F., Rheima, A. M., & Al Kadmy, I. M. (2022). Antibacterial, antibiofilm, and antipersister cells formation of green synthesis silver nanoparticles and graphene nanosheets against Klebsiella pneumoniae. Reviews in Medical Microbiology, 33(1), 56–63. [CrossRef] [Google Scholar]
- Mohammed, S. H., Rheima, A., Al-Jaafari, F., & Al-Marjani, M. F. (2022). Green- synthesis of Platinum Nanoparticles using Olive Leaves Extracts and its Effect on Aspartate Aminotransferase Activity. Egyptian Journal of Chemistry, < 55(4), 1–2. [Google Scholar]
- Songping, W. and M. Shuyuan, Preparation of ultrafine silver powder using ascorbic acid as reducing agent and its application in MLCI. Materials Chemistry and Physics, 2005. 89(2-3): p. 423–427. [CrossRef] [Google Scholar]
- Shankar, T., et al., Green synthesis of silver nanoparticles using Capsicum frutescence and its intensified activity against E. coli. Resource-Efficient Technologies, 2017. 3(3): p. 303–308. [CrossRef] [Google Scholar]
- Mahdi, A., Abbas, Z. S., Hassanain, K., & d Ha, I. (2020). Synthesis, characterization, spectroscopic, and biological activity studies of Nano scale Zn (II), Mn (II) and Fe (II) theophylline complexes. [Google Scholar]
- Mahdi, M., et al. Green synthesis of gold NPs by using dragon fruit: Toxicity and wound healing. in Journal of Physics: Conference Series. 2021. IOP Publishing. [Google Scholar]
- Tripathi, R., et al., Catalytic activity of biogenic silver nanoparticles synthesized by Ficus panda leaf extract. Journal of Molecular Catalysis B Enzymatic, 2013. 96: 75–80. [CrossRef] [Google Scholar]
- Taha, A., E. Afkar, and A.F. Abdelkader, The in vivo biosynthesis of antibacterial silver nanoparticles using red pepper (Capsicum annuum L) fruit extract. The Egyptian Society of Experimental Biology, 2018. [Google Scholar]
- Nariya, P.B., et al., In vitro evaluation of antioxidant activity of Cordia dichotoma (Forst f.) bark. Ayu, 2013. 34(1): p. 124–128. [CrossRef] [PubMed] [Google Scholar]
- Bhandari, S.R., U. Bashyal, and Y.-S. Lee, Variations in proximate nutrients, phytochemicals, and antioxidant activity of field-cultivated red pepper fruits at different harvest times. Horticulture, Environment, and Biotechnology, 2016. 57(5): p. 493–503. [CrossRef] [Google Scholar]
- Huang, Y., et al., Comparative studies on phytochemicals and bioactive activities in 24 new varieties of red pepper. Korean Journal of Food Science and Technology, 2014. 46(4): p. 395–403. [CrossRef] [Google Scholar]
- Howard, L., et al., Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. Journal of agricultural and food chemistry, 2000. 48(5): p. 1713–1720. [CrossRef] [PubMed] [Google Scholar]
- Priya, R.S., D. Geetha, and P.S. Ramesh, Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs - A comparative study. Ecotoxicology and Environmental Safety, 2016. 134: p. 308–318. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.