Open Access
Issue
E3S Web of Conf.
Volume 393, 2023
2023 5th International Conference on Environmental Prevention and Pollution Control Technologies (EPPCT 2023)
Article Number 01002
Number of page(s) 5
Section Environmental Assessment and Urban and Rural Resource Planning
DOI https://doi.org/10.1051/e3sconf/202339301002
Published online 02 June 2023
  1. Liu, R.: Design of Intelligent Lighting System based on WiFi and Arduino Single Chip Microcomputer. Proceedings of the 7th International Conference on Education, Management, Information and Mechanical Engineering (EMIM 2017) (2017) [Google Scholar]
  2. Weng, Z., Fang, J., Kong, M., Cheng, Y.: Research on Intelligent Lighting System of LED Based on Wireless Sensor Network Technology. Proceedings of the International Conferenceon Chemical, Material and Food Engineering (2015) [Google Scholar]
  3. Cao, J., Crozier, C., McCulloch, M. et al.: Optimal design and operation of a low carbon community based multi-energy systems considering EV integration. IEEE Trans Sustain Energy 10, 1217–1226 (2019). [CrossRef] [Google Scholar]
  4. Li, B., Roche, R., Paire, D. et al.: Coordinated scheduling of a gas/electricity/heat supply network considering temporal-spatial electric vehicle demands. Electric Power Systems Research 163,1-10 (2018). [CrossRef] [Google Scholar]
  5. Liu, J., Sun, W., Harrison, G.P.: Optimal low-carbon economic environmental dispatch of hybrid electricity-natural gas energy systems considering P2G. Energies, 12,1355 (2019). [CrossRef] [Google Scholar]
  6. Wang, S., Chen, H. A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network. Appl Energy 235, 1126–1140 (2019). [CrossRef] [Google Scholar]
  7. Bao, M. L., Yang, Y., Ding, Y.: Assessment of cascading failures in power system considering effects of natural gas system (in Chinese). Power Syst Technol 43, 32–40 (2019). [Google Scholar]
  8. Lu, S., Gu, W., Zhou, S. Y. et al.: High-resolution modeling and decentralized dispatch of heat and electricity integrated energy Sysstem. IEEE Trans Sustain Enerv 11, 1451-1463 (2020). [CrossRef] [Google Scholar]
  9. Bao, Z. J., Jiang, Z. W., Wu, L.: Evaluation of bi-directional cascading failure propagation in integrated electricity-natural gas system. Int J Electr Power & Energy Syst 121, 106045 (2020). [CrossRef] [Google Scholar]
  10. Zhou, W., Yu, W., Hock, J.: Multi-agent system with information fusion for intelligent lighting control. 2014 International Conference on Automatic Control Theory and Application (2014) [Google Scholar]
  11. Wojnicki, I., Kotulski, L., Sdziwy, A. et al.: Application of distributed graph transformations to automated generation of control patterns for intelligent lighting systems. Journal of Computational Science 23, (2017). [CrossRef] [Google Scholar]
  12. Kuang, G., Kuang, C.: Construction of Intelligent Lighting System of Vehicle Based on Optical Fiber Sensors Technology. Proceedings of the 2016 International Conference on Education, Management and Computer Science (2016). [Google Scholar]
  13. Pan, Y., Mei, F., Zhou, C. et al.: Analysis on integrated energy system cascading failures considering interaction of coupled heating and power networks. IEEE Access 7, 89752–89765 (2019). [CrossRef] [Google Scholar]
  14. Yu, J., Guo, L., Ma, M. et al.: Risk assessment of integrated electrical, natural gas and district heating systems considering solar thermal CHP plants and electric boilers. Int J Electr Power Energy Syst 103, 277– 287 (2018). [CrossRef] [Google Scholar]
  15. Zeng, Z., Ding, T., Xu, Y. et al.: Reliability evaluation for integrated power-gas systems with power-to-gas and gas storages. IEEE Trans Power Syst 35, 571–583 (2020). [CrossRef] [Google Scholar]
  16. Yu, J. J. Q., Hou, Y., Lam, A.Y.S et al.: Intelligent fault detection scheme for microgrids with wavelet-based deep neural networks. IEEE Trans Smart Grid 10, 1694–1703 (2019). [CrossRef] [Google Scholar]
  17. Sun, Z., Jin, H., Gu, J. et al.: Gradual fault early stage diagnosis for air source heat pump system using deep learning techniques. Int J Refrigeration 107, 63–72 (2019). [CrossRef] [Google Scholar]
  18. Kouadri, A., Hajji, M., Harkatet, M.: Hidden Markov model based principal component analysis for intelligent fault diagnosis of wind energy converter systems. Renew Energy 150, 598–606 (2020). [CrossRef] [Google Scholar]
  19. Zhang, S., Wang, Y., Liu, M. et al.: Data-based line trip fault prediction in power systems using LSTM networks and SVM. IEEE Access 6, 7675–7686 (2018). [CrossRef] [Google Scholar]
  20. IPCC. Specoal Report on Global Warming of 1.5°C[G]. UK: Cambridge University Press, (2018). [Google Scholar]
  21. Zhang, X., Zhao, X., Jiang, Z., et al.: How to Achieve the 2030 CO2 Emission-Reduction Targets for China's Industrial Sector: Retrospective Decomposition and Prospective Trajectories. Global Environmental Change 44, 83-97 (2017). [CrossRef] [Google Scholar]
  22. Onat, N. C., Kucukvar, M., Tatari, O.: Scope-based carbon footprint analysis of U.S. residential and commercial buildings: An input-output hybrid life cycle assessment approach. Building and Environment 72, 53-62 (2014). [CrossRef] [Google Scholar]
  23. Verbeeck, G., Hens, H.: Life cycle inventory of buildings: A calculation method. Building & Environment 45(4), 1037-1041 (2010). [CrossRef] [Google Scholar]
  24. Blom, I., Itard, L., Meijer, A.: LCA-based environmental assessment of the use and maintenance of heating and ventilation systems in Dutch dwellings. Building & Environment 45(11), 2362-2372 (2010). [CrossRef] [Google Scholar]
  25. Guggemos, A. A., Horvath, A.: Comparison of Environmental Effects of Steel-and Concrete-Framed Buildings. Journal of Infrastructure Systems, 11(2):93-101 (2005). [CrossRef] [Google Scholar]
  26. Ramesh, T., Prakash, R., Shukla, K. K.: Life cycle energy analysis of buildings: An overview. Energy and Buildings 42(10), 1592-1600 (2010). [CrossRef] [Google Scholar]
  27. Free trade zone in Shanghai lingang new area green low carbon building achievement cases: unit h01-2 PDC1-0401-01 project. https://zhuan-lan.zhihu.com/p/551630031, (2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.