Open Access
Issue
E3S Web of Conf.
Volume 393, 2023
2023 5th International Conference on Environmental Prevention and Pollution Control Technologies (EPPCT 2023)
Article Number 01007
Number of page(s) 7
Section Environmental Assessment and Urban and Rural Resource Planning
DOI https://doi.org/10.1051/e3sconf/202339301007
Published online 02 June 2023
  1. Kang, G., Gao, J.Z., Xie, G. (2017) Data-driven water quality analysis and prediction: a survey. In: IEEE third international conference on big data computing service and applications (BigDataService). Redwood city, CA, USA. pp. 224-232. doi: 10.1109/BigDataService.2017.40. [CrossRef] [Google Scholar]
  2. Moses, S. A., Janaki, L., Joseph, S., and Joseph, J. (2015) Water quality prediction capabilities of WASP model for a tropical lake system. Lakes & Reservoirs Research and Management, 20(4): 285-299. https://doi.org/10.1111/lre.12110. [CrossRef] [Google Scholar]
  3. Seo, D., Kim, M., Ahn, J.H. (2012) Prediction of chlorophyll-a changes due to weir constructions in the Nakdong River using EFDC-WASP modelling. Environmental Engineering Research, 17(2): 95-102. https://doi.org/10.4491/eer.2012.17.2.095. [CrossRef] [Google Scholar]
  4. Noori, N., Kalin, L., Isik, S. (2020) Water quality prediction using SWAT-ANN coupled approach. Journal of Hydrology, 590:125220. https://doi.org/10.1016/j.jhydrol.2020.125220. [CrossRef] [Google Scholar]
  5. Li, X., Huang, M., Wang, R. (2020) Numerical simulation of Donghu lake hydrodynamics and water quality based on remote sensing and MIKE 21. ISPRS International Journal of Geo-Information, 9(2): 94. https://doi.org/10.3390/ijgi9020094. [CrossRef] [Google Scholar]
  6. Chen, Y., Song, L., Liu, Y., Yang, L., and Li, D. (2020) A review of the artificial neural network models for water quality prediction. Applied Sciences, 10(17): 5776. https://doi.org/10.3390/app10175776. [CrossRef] [Google Scholar]
  7. Najah, A., El-Shafie, A., Karim, O.A. (2013) Application of artificial neural networks for water quality prediction. Neural Computing and Applications, 22(Suppl 1): 187–201. https://doi.org/10.1007/s00521-012-0940-3. [CrossRef] [Google Scholar]
  8. Li, Z., Jiang, Y., Yue, J., Zhang, L., and Li, D. (2012) An improved gray model for aquaculture water quality prediction. Intelligent Automation & Soft Computing, 18(5): 557-567. https://doi.org/10.1080/10798587.2012.10643265. [CrossRef] [Google Scholar]
  9. LeCun, Y., Bengio, Y., Hinton, G. (2015) Deep learning. Nature, 521(7553): 436–444. https://doi.org/10.1038/nature14539. [CrossRef] [PubMed] [Google Scholar]
  10. Chen, K., Chen, H., Zhou, C., Huang, Y., Qi, X., Shen, R., Liu, F., Zuo, M., Zuo, X., Wang, J., Zhang, Y., Chen, D., Chen, X., Deng, Y., and Ren, H. (2020) Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water Research, 171: 115454. https://doi.org/10.1016/j.watres.2019.115454. [CrossRef] [PubMed] [Google Scholar]
  11. Wan, H., Xu, R., Zhang, M., Cai, Y., Li, J., and Shen, X. (2022) A novel model for water quality prediction caused by non-point sources pollution based on deep learning and feature extraction methods. Journal of Hydrology, 612(Part A): 128081. https://doi.org/10.1016/j.jhydrol.2022.128081. [CrossRef] [Google Scholar]
  12. Zou, Q., Xiong, Q., Li, Q., Yi, H., Yu, Y., and Wu, C. (2020) A water quality prediction method based on the multi-time scale bidirectional long short-term memory network. Environmental Science and Pollution Research, 27: 16853–16864. https://doi.org/10.1007/s11356-020-08087-7. [CrossRef] [PubMed] [Google Scholar]
  13. Bi, J., Lin, Y., Dong, Q., Yuan, H., and Zhou, M. (2021) Large-scale water quality prediction with integrated deep neural network. Information Sciences, 571: 191-205. https://doi.org/10.1016/j.ins.2021.04.057. [CrossRef] [Google Scholar]
  14. O'Shea, K., Nash, R. (2015) An introduction to convolutional neural networks. arXiv preprint arXiv, 1511.08458. https://doi.org/10.48550/arXiv.1511.08458. [Google Scholar]
  15. Hochreiter, S., Schmidhuber, J. (1997) Long short-term memory. Neural Computation, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735. [CrossRef] [Google Scholar]
  16. Sutskever, I., Vinyals, O., and Le, Q.V. (2014) Sequence to sequence learning with neural networks. In: 28th conference on neural information processing systems (NIPS 2014). Montreal, Canada. pp. 3104-3112. https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html. [Google Scholar]
  17. Bahdanau, D., Cho, K., Bengio, Y. (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv, 1409.0473. https://doi.org/10.48550/arXiv.1409.0473. [Google Scholar]
  18. Luong, M. T., Pham, H., Manning, C. D. (2015) Effective approaches to attention-based neural machine translation. arXiv preprint arXiv, 1508.04025. https://doi.org/10.48550/arXiv.1508.04025. [Google Scholar]
  19. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017) Attention is all you need. In: 31st conference on neural information processing systems (NIPS 2017). Long Beach, CA, USA. pp. 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html. [Google Scholar]
  20. Niu, Z., Zhong, G., Yu, H. (2021) A review on the attention mechanism of deep learning. Neurocomputing, 452: 48-62. https://doi.org/10.1016/j.neucom.2021.03.091. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.