Open Access
Issue
E3S Web of Conf.
Volume 393, 2023
2023 5th International Conference on Environmental Prevention and Pollution Control Technologies (EPPCT 2023)
Article Number 02005
Number of page(s) 4
Section Ecological Protection and Sustainable Development Research
DOI https://doi.org/10.1051/e3sconf/202339302005
Published online 02 June 2023
  1. Jin XL, Jing M, Chen X, Zhuang ZX, Wang XR, Lee FS. A study on the relationship between BOD(5) and COD in a coastal seawater environment with a rapid BOD measurement system. Water Sci Technol. 2010;61(6):1499-503. [CrossRef] [PubMed] [Google Scholar]
  2. Ahmed A A M, Shah S M A. Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River[J]. Journal of King Saud University-Engineering Sciences, 2017, 29(3): 237-243. [CrossRef] [Google Scholar]
  3. Solgi A, Pourhaghi A, Bahmani R, et al. Improving SVR and ANFIS performance using wavelet transform and PCA algorithm for modeling and predicting biochemical oxygen demand (BOD)[J]. Ecohydrology & Hydrobiology, 2017, 17(2): 164-175. [CrossRef] [Google Scholar]
  4. Oliveira-Esquerre K P, Seborg D E, Mori M, et al. Application of steady-state and dynamic modeling for the prediction of the BOD of an aerated lagoon at a pulp and paper mill: Part II. Nonlinear approaches[J]. Chemical Engineering Journal, 2004, 105(1-2): 61-69. [CrossRef] [Google Scholar]
  5. LIU, Yanli, WANG, Yourong, et ZHANG, Jian. New machine learning algorithm: Random forest. In : Information Computing and Applications: Third International Conference, ICICA 2012, Chengde, China, September 14-16, 2012. Proceedings 3. Springer Berlin Heidelberg, 2012. p. 246-252. [CrossRef] [Google Scholar]
  6. Liaw A, Wiener M. Classification and regression by randomForest[J]. R news, 2002, 2(3): 18-22. [Google Scholar]
  7. Chen T, He T, Benesty M, et al. Xgboost: extreme gradient boosting[J]. R package version 0.4-2, 2015, 1(4): 1-4. [Google Scholar]
  8. Dorogush A V, Ershov V, Gulin A. CatBoost: gradient boosting with categorical features support[J]. arXiv preprint arXiv:1810.11363, 2018. [Google Scholar]
  9. Hancock J T, Khoshgoftaar T M. CatBoost for big data: an interdisciplinary review[J]. Journal of big data, 2020, 7(1): 1-45. [CrossRef] [Google Scholar]
  10. Jabeur S B, Gharib C, Mefteh-Wali S, et al. CatBoost model and artificial intelligence techniques for corporate failure prediction[J]. Technological Forecasting and Social Change, 2021, 166: 120658 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.