Open Access
E3S Web Conf.
Volume 394, 2023
6th International Symposium on Resource Exploration and Environmental Science (REES 2023)
Article Number 01001
Number of page(s) 8
Published online 02 June 2023
  1. Junlin Liu, Huihu Liu, Kun Zhang, et al. Diffusion characteristics of CO2 and CH4 in CO2-ECBM process of low permeability coal seam[J/OL]. Coal Science and Technology :1-11[2023-03-30]. [Google Scholar]
  2. Busch A, Gensterblum Y. CBM and CO2-ECBM related sorption processes in coal: a review[J]. Coal Geol 2011; 87:49-e71. [CrossRef] [Google Scholar]
  3. Lin J, Ren T, Wang GD, Nemcik J. Simulation investigation of N2-injection enhanced gas drainage: model development and identification of critical parameters[J]. Nat Gas Sci Eng 2018; 55:30-41. [CrossRef] [Google Scholar]
  4. Fan N, Wang JR, Deng CB, et al. Numerical study on enhancing coalbed methane recovery by injecting N2/CO2 mixtures and its geological significance[J]. Energy Sci Eng 2019. [PubMed] [Google Scholar]
  5. Bai G, Zeng XK, Li XM, et al. Influence of carbon dioxide on the adsorption of methane by coal using low-field nuclear magnetic resonance[J]. Energy Fuel 2020;34(5):6113-23. [CrossRef] [Google Scholar]
  6. Wenping Jiang, Yongjun Cui. A Discussion on Main Geologic Controlling Factors of CO2 Sequestration in Deep Coal Seams[J]. Coal Geology of China, 2010, 22 (11): 1-6. [Google Scholar]
  7. Lin J, Ren T, Wang GD, et al. Experimental study of the adsorption-induced coal matrix swelling and its impact on ECBM[J]. Earth Sci 2017;28(5):917-25. [Google Scholar]
  8. Li Y, Wang Y, Wang J, Pan Z. Variation in permeability during CO2-CH4 displacement in coal seams: Part 1-Experimental insights[J]. Fuel 2019:116666. [Google Scholar]
  9. Gang Bai, Jun Su, Zunguo Zhang, Anchang Lan, Xihua Zhou, Fei Gao, Jianbin Zhou, Effect of CO2 injection on CH4 desorption rate in poor permeability coal seams: An experimental study[J]. Energy, Volume 238, Part A, 2022, 121674. [CrossRef] [Google Scholar]
  10. Di Wu. The reserch on rule of CH4/CO2 seepageadsorption-desorption and CO2 displacement CH4 by injiecting CO2 in residual coal seams under the thermo-mechanical action[D]. LiaoNing Technical University, 2013. [Google Scholar]
  11. Li Y., Tang D., Xu H., et al. Experimental research on coal permeability: The roles of effective stress and gas slippage[J]. Journal of Natural Gas Science & Engineering, 2014, 21: 481-488. [CrossRef] [Google Scholar]
  12. Zou J., Chen W., Yang D., et al. The impact of effective stress and gas slippage on coal permeability under cyclic loading[J]. Journal of Natural Gas Science & Engineering, 2016, 31: 236-248. [CrossRef] [Google Scholar]
  13. Yin GZ, Deng BZ, Li MH, et al. Impact of injection pressure on CO2-enhanced coalbed methane recovery considering mass transfer between coal fracture and matrix[J]. Fuel, 2017; 196: 288-97. [CrossRef] [Google Scholar]
  14. Jiajun Xu, Yulong Chen, Chengrong Jiang, et al. Test on carbon dioxide permeability in coal seam[J]. Mining Safety & Environmental Protection, 2017, 44(04): 10-13. [Google Scholar]
  15. Wang LG, Wang ZF, Li KZ, Chen HD. Comparison of enhanced coalbed methane recovery by pure N2 and CO2 injection: experimental observations and numerical simulation[J]. Nat Gas Sci Eng 2015; 23:363-72. [CrossRef] [Google Scholar]
  16. Metz B. IPCC Special Report on Carbon Dioxide Capture and Storage[J]. New York: Cambridge University Press; 2005. [Google Scholar]
  17. Li Y, Wang Z, Pan Z, Niu X, Yu Y, Meng S. Pore structure and its fractal dimensions of transitional shale: A cross section from east margin of the Ordos Basin, China[J]. Fuel 2019; 241:417-31. [CrossRef] [Google Scholar]
  18. Kim HJ, Shi Y, He J, Lee HH, Lee CH. Adsorption characteristics of CO2 and CH4 on dry and wet coal from subcritical to supercritical conditions[J]. Chemical Engineering Journal, 2011;171(1):45-53. [CrossRef] [Google Scholar]
  19. Hemant K, Derek E, Liu J, Pone D, Mathews JP. Permeability evolution of propped artificial fractures in coal on injection of CO2[J]. Petrol Sci Eng 2015; 133:695-704 [CrossRef] [Google Scholar]
  20. Li Y, Zhang C, Tang D, Gan Q, Niu X, Shen R. Coal pore size distributions controlled by the coalification process: an experimental study of coals from the Junggar, Ordos, and Qinshui basins in China[J]. Fuel 2017; 206:352-63. [CrossRef] [Google Scholar]
  21. Izadi G, Wang S, Elsworth D. Permeability evolution of fluid-infiltrated coal containing discrete fractures[J]. Coal Geol 2011;85(2):202-11. [CrossRef] [Google Scholar]
  22. Skurtveit E, Aker E, Soldal M, Angeli M, Wang Z. Experimental investigation of CO2 breakthrough and flow mechanism in shale[J]. Pet Geo Sci 2012; 18:3–15. [CrossRef] [Google Scholar]
  23. Wu Y, Pruess K, Persoff P. Gas flow in porous media with Klinkenberg effects[J]. Transp Porous Media 1998; 32:117-37. [CrossRef] [Google Scholar]
  24. Kollek JJ. The determination of the permeability of concrete to oxygen by the cembureau method-a recommendation[J]. Mater Struct 1989;22(3):225-30. [CrossRef] [Google Scholar]
  25. Shuxun Sang, Yanmin Zhu, Jing Zhang, et al. Solidgas interaction mechanism of coal-adsorbed gas(III)& Physical processes and theoretical models of coal adsorption of gas[J]. natural gas industry. 2005, 25(1):4. [Google Scholar]
  26. Yuanping Cheng, Biao Hu. A new pore classfication method based on the mechane occurrence and migration characteristics in coal[J]. Journal of China Coal Society, 2023, 48(01): 212-225. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.