Open Access
E3S Web Conf.
Volume 394, 2023
6th International Symposium on Resource Exploration and Environmental Science (REES 2023)
Article Number 01009
Number of page(s) 7
Published online 02 June 2023
  1. Tabari H. (2020). Climate change impact on flood and extreme precipitation increases with water availability Sci. Rep. 10 13768. [Google Scholar]
  2. Yang T., Li Q., Chen X., De Maeyer P., Yan X., Liu Y., Zhao T., Li L., (2020). Spatiotemporal variability of the precipitation concentration and diversity in Central Asia. Atmos. Res. 241, 104954. [CrossRef] [Google Scholar]
  3. Carmichael M. J., Pancost R. D., & Lunt D. J. (2018). Changes in the occurrence of extreme precipitation events at the Paleocene–Eocene thermal maximum. Earth and Planetary Science Letters, 501, 24-36. [CrossRef] [Google Scholar]
  4. Loptson, C. A., Lunt, D. J., & Francis, J. E. (2014). Investigating vegetation–climate feedbacks during the early Eocene. Climate of the Past, 10(2), 419-436. [CrossRef] [Google Scholar]
  5. Myhre G., Alterskjær K., Stjern C. W., Hodnebrog Ø., Marelle L., Samset B. H., Sillmann J., Schaller N., Fischer E., Schulz M. & Stohl A. (2019). Frequency of extreme precipitation increases extensively with event rareness under global warming. Scientific reports, 9(1), 1-10. [CrossRef] [PubMed] [Google Scholar]
  6. Wei L., Hu K.H., & Hu X.D. (2018). Rainfall occurrence and its relation to flood damage in China from 2000 to 2015. Journal of Mountain Science, 15(11), 2492-2504. [CrossRef] [Google Scholar]
  7. Wu X., Jiang Y., Yu X., Zhang L., & Li Y., (2019). Study on Risk Zoning of Mountain Flood Disaster in the Yigeziya River of Xinjiang Based on Flood Area Inundation Model. Journal of Arid Meteorology, 37(4), 663. [Google Scholar]
  8. Ministry of Water Resources of the People’s Republic of China. China Flood and Drought Disaster Prevention Bulletin 2020 [EB/OL]. (202112-08) [2022-04-15]. [Google Scholar]
  9. Duan W.L, He B., Nover D., et al., Floods and associated socioeconomic damages in China over the last century, Nat. Hazards 82 (1) (2016) 401–413. (in Chinese) [CrossRef] [Google Scholar]
  10. Zhai P., Yu R., Guo Y., Li Q., Ren X., Wang Y., Xu W., Liu Y., & Ding Y. (2016). The strong El Niño of 2015/16 and its dominant impacts on global and China’s climate. Journal of Meteorological Research, 30(3), 283-297. [CrossRef] [Google Scholar]
  11. Zhang L., Liu Y., Zhan H., Jin M., & Liang X. (2021). Influence of solar activity and EI Niño-Southern Oscillation on precipitation extremes, streamflow variability and flooding events in an arid-semiarid region of China. Journal of Hydrology, 601, 126630. [CrossRef] [Google Scholar]
  12. Chen Y. & Ma Y. (2021). Temporal and spatial variation characteristics of different grades of rainstorm and flood disasters in Xinjiang. Geography of Arid Regions (06), 1515-1524. (in Chinese) [Google Scholar]
  13. Zhang Q., Singh V.P., Li J., Jiang F., & Bai Y. (2012). Spatio-temporal variations of precipitation extremes in Xinjiang, China. Journal of Hydrology, 434, 7-18. [CrossRef] [Google Scholar]
  14. Sun G., Chen Y., Li W., Pan C., Li J., & Yang Y. (2013). Spatial distribution of the extreme hydrological events in Xinjiang, northwest of China. Natural hazards, 67(2), 483-495. [CrossRef] [Google Scholar]
  15. Wei Y., Gong M., & Li H. (2021). Spatialtemporal distribution and influence of disastrous rainstorm in Southern Xinjiang during 2010-2019. Journal of Arid Meteorology, 39(06), 930. (in Chinese) [Google Scholar]
  16. Wang H., Chen Y., & Chen Z. (2013). Spatial distribution and temporal trends of mean precipitation and extremes in the arid region, northwest of China, during 1960–2010. Hydrological Processes, 27(12), 1807-1818. [CrossRef] [Google Scholar]
  17. Zweifel L., Meusburger K., & Alewell C. (2019). Spatio-temporal pattern of soil degradation in a Swiss Alpine grassland catchment. Remote sensing of environment, 235, 111441. [CrossRef] [Google Scholar]
  18. Chandrashekar V.D., & Shetty A. (2018). Trends in extreme rainfall over ecologically sensitive Western Ghats and coastal regions of Karnataka: an observational assessment. Arabian Journal of Geosciences, 11(12), 1-13. [CrossRef] [Google Scholar]
  19. Li S., Tang Q., Lei J., Xu X., Jiang J., & Wang Y. (2015). An overview of non-conventional water resource utilization technologies for biological sand control in Xinjiang, northwest China. Environmental Earth Sciences, 73(2), 873-885. [CrossRef] [Google Scholar]
  20. Li G., Yu Z., Wang W., Ju Q., & Chen X. (2021). Analysis of the spatial distribution of precipitation and topography with GPM data in the Tibetan Plateau. Atmospheric Research, 247, 105259. [CrossRef] [Google Scholar]
  21. Shi P. (2019). Disaster risk science. Springer. [Google Scholar]
  22. Yang L., Liu J. Some advances of water vapor research in Xinjiang. Journal of Natural Disasters, 2018, 27(02): 1-13. (in Chinese) [Google Scholar]
  23. Wu M., Chen Y., & Xu C. (2015). Assessment of meteorological disasters based on information diffusion theory in Xinjiang, Northwest China. Journal of Geographical Sciences, 25(1), 69-84. [CrossRef] [Google Scholar]
  24. Ling H., Deng X., Long A., & Gao H. (2016). The multi-time-scale correlations for drought–flood index to runoff and North Atlantic Oscillation in the headstreams of Tarim River, Xinjiang, China. Hydrology Research, 48(1), 253-264. [Google Scholar]
  25. Chen B., Chen K., Wang X., Wang X. Spatial and temporal distribution characteristics of rainstorm and flood disasters around Tarim Basin. Pol. J. Environ. Stud. Vol. 31, No. 3 (2022), 2029-2037. [CrossRef] [Google Scholar]
  26. Jia J.P. Statistics. Tsinghua University Press. 68, 2004. [Google Scholar]
  27. Pielke R. (2021). Economic ‘normalisation’of disaster losses 1998 – 2020: A literature review and assessment. Environmental Hazards, 20(2), 93-111. [CrossRef] [Google Scholar]
  28. Jia H., Chen F., Pan D., Du E., Wang L., Wang N., & Yang A. (2022). Flood risk management in the Yangtze River basin—Comparison of 1998 and 2020 events. International Journal of Disaster Risk Reduction, 68, 102724. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.