Open Access
Issue
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
Article Number 01003
Number of page(s) 8
Section Indoor Environmental Quality (IEQ), Human Health, Comfort and Productivity
DOI https://doi.org/10.1051/e3sconf/202339601003
Published online 16 June 2023
  1. A.P. Gagge, J.A.J. Stolwijk, J.D. Hardy, Comfort and thermal sensations and associated physiological responses at various ambient temperatures, Environ. Res. 1, 1–20 (1967). [CrossRef] [Google Scholar]
  2. R.J. de Dear, J.W. Ring, P.O. Fanger, Thermal Sensations Resulting From Sudden Ambient Temperature Changes, Indoor Air. 3, 181–192 (1993). [CrossRef] [Google Scholar]
  3. H. Hensel, Functional and Structural Basis of Thermoreception, in: 1976: pp. 105–118. [Google Scholar]
  4. H. Hensel, Thermoreception and temperature regulation, Monogr. Physiol. Soc. 38, 1–321 (1981). [Google Scholar]
  5. M. Cabanac, Sensory Pleasure, Q. Rev. Biol. 54, 1–29 (1979). [CrossRef] [PubMed] [Google Scholar]
  6. R. de Dear, Revisiting an old hypothesis of human thermal perception: alliesthesia, Build. Res. Inf. 39, 108–117 (2011). [CrossRef] [Google Scholar]
  7. T. Parkinson, R. De Dear, C. Candido, Thermal pleasure in built environments: Alliesthesia in different thermoregulatory zones, Build. Res. Inf. 44, 20–33 (2016). [CrossRef] [Google Scholar]
  8. T. Parkinson, R. De Dear, Thermal pleasure in built environments: Spatial alliesthesia from contact heating, Build. Res. Inf. 44, 248–262 (2016). [CrossRef] [Google Scholar]
  9. T. Parkinson, R. de Dear, Thermal pleasure in built environments: spatial alliesthesia from air movement, Build. Res. Inf. 45, 320–335 (2017). [CrossRef] [Google Scholar]
  10. T. Parkinson, R. de Dear, C. Candido, Perception of Transient Thermal Environments: Pleasure and Alliesthesia, in: 7th Wind. Conf. Chang. Context Comf. an Unpredictable World, Windsor (UK), 2012. [Google Scholar]
  11. T. Parkinson, R. de Dear, Thermal pleasure in built environments: physiology of alliesthesia, Build. Res. Inf. 43, 288–301 (2015). [CrossRef] [Google Scholar]
  12. H. Zhang, E. Arens, C. Huizenga, T. Han, Thermal sensation and comfort models for non-uniform and transient environments, part II: Local comfort of individual body parts, Build. Environ. 45, 389–398 (2010). [CrossRef] [Google Scholar]
  13. H. Zhang, E. Arens, C. Huizenga, T. Han, Thermal sensation and comfort models for non-uniform and transient environments: Part : Local sensation of individual body parts, Build. Environ. 45, 380–388 (2010). [CrossRef] [Google Scholar]
  14. H. Zhang, E. Arens, C. Huizenga, T. Han, Thermal sensation and comfort models for non-uniform and transient environments, part III: Whole-body sensation and comfort, Build. Environ. 45, 399–410 (2010). [CrossRef] [Google Scholar]
  15. M. Paquet, M. Marcelli, A. Bachelet, E. Obukhova, E. Calamote, F. Lae, J. Nicolle, M. Abadie, On the design and testing of Airtightness Modifier dedicated to the TIPEE IEQ House, in: 38th AIVC Conf. “Ventilating Heal. Low-Energy Build., Nottingham, UK, 2017: pp. 352–360. [Google Scholar]
  16. ASHRAE, ANSI/ASHRAE Standard 55-2017 - Thermal Environmental Conditions for Human Occupancy, 2017. [Google Scholar]
  17. ISO, Energy performance of buildings – Indoor environmental Quality - Part 1: Indoor environmental input parameters for the design and assessment of energy performance of buildings (ISO 17772 - 2017), 2017. [Google Scholar]
  18. ISO, Ergonomics of the thermal environment — Instruments for measuring and monitoring physical quantities (ISO 7726 - 1998), 1998. [Google Scholar]
  19. F. Tartarini, S. Schiavon, pythermalcomfort: A Python package for thermal comfort research, SoftwareX. 12, 100578 (2020). [CrossRef] [Google Scholar]
  20. M. Schweiker, et al, Evaluating assumptions of scales for subjective assessment of thermal environments – Do laypersons perceive them the way, we researchers believe?, Energy Build. 211, 109761 (2020). [CrossRef] [Google Scholar]
  21. ISO, Ergonomics of the physical environment — Subjective judgement scales for assessing physical environments (ISO 10551 - 2019), 2019. [Google Scholar]
  22. M. Vellei, R. de Dear, J. Le Dreau, J. Nicolle, M. Rendu, M. Abadie, G. Michaux, M. Doya, Dynamic thermal perception under whole-body cyclical conditions: Thermal overshoot and thermal habituation, Build. Environ. 226, 109–677 (2022). [Google Scholar]
  23. M. Schweiker, K. Schakib-Ekbatan, X. Fuchs, S. Becker, A seasonal approach to alliesthesia. Is there a conflict with thermal adaptation?, Energy Build. 212, 109745 (2020). [CrossRef] [Google Scholar]
  24. M. Vellei, G. Chinazzo, K.-M. Zitting, J. Hubbard, Human thermal perception and time of day: A review, Temperature. 1–22 (2021). [Google Scholar]
  25. M. Vellei, I. Pigliautile, A.L. Pisello, Effect of time-of-day on human dynamic thermal perception (under review), Sci. Rep. (2023). [Google Scholar]
  26. M. Cuesta, P. Boudreau, N. Cermakian, D.B. Boivin, Skin Temperature Rhythms in Humans Respond to Changes in the Timing of Sleep and Light, J. Biol. Rhythms. 32, 257–273 (2017). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.