Open Access
Issue
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
Article Number 01083
Number of page(s) 8
Section Indoor Environmental Quality (IEQ), Human Health, Comfort and Productivity
DOI https://doi.org/10.1051/e3sconf/202339601083
Published online 16 June 2023
  1. N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern and W. H. Engelmann, “The national human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants,” J. Expo. Sci. Environ. Epidemiol. 11, 231-252, (2001) [CrossRef] [Google Scholar]
  2. M. A. Humphreys and J. F. Nicol, “Understanding the adaptive approach to thermal comfort,” ASHRAE Trans. 104, 991-1004, (1998) [Google Scholar]
  3. A. Auliciems, “Towards a psycho-physiological model of thermal perception,” Int. J. Biometeorol. 25, pp. 109-122, (1981) [CrossRef] [PubMed] [Google Scholar]
  4. R. J. de Dear and G. S. Brager, “Developing an adaptive model of thermal comfort and preference,” ASHRAE Trans. 104, 145-167, (1998) [Google Scholar]
  5. G. S. Brager and R. J. de Dear, “Thermal adaptation in the built environment: A literature review,” Energy Build., 27, 83-96, (1998) [CrossRef] [Google Scholar]
  6. R. Kosonen and F. Tan, “Assessment of productivity loss in air-conditioned buildings using PMV index,” Energy Build. 36, 987-993, (2004) [CrossRef] [Google Scholar]
  7. L. Lan, P. Wargocki and Z. Lian, “Quantitative measurement of productivity loss due to thermal discomfort,” Energy Build. 43, pp. 1057-1062, (2011) [CrossRef] [Google Scholar]
  8. S. Tanabe, M. Haneda and N. Nishihara, “Workplace productivity and individual thermal satisfaction,” Build. Environ. 91, 42-50, (2015) [CrossRef] [Google Scholar]
  9. R. de Dear and G. S. Brager, “The adaptive model of thermal comfort and energy conservation in the built environment,” Int. J. of Biometeorol. 45, 100-108, (2001) [CrossRef] [Google Scholar]
  10. J. F. Nicol and M.A. Humphreys, “Adaptive thermal comfort and sustainable thermal standards for building,” Energy Build. 34, 563-572, (2002) [CrossRef] [Google Scholar]
  11. Y. Yau and B. Chew, “A review on predicted mean vote and adaptive thermal comfort models,” Build. Serv. Eng. Res. Technol. 35, 23-35, (2014) [CrossRef] [Google Scholar]
  12. K. J. McCartney and J. F. Nicol, “Developing an adaptive control algorithm for Europe,” Energy Build. 34, 623-635, (2002) [CrossRef] [Google Scholar]
  13. H. Feriadi and N. H. Wong, “Thermal comfort for naturally ventilated houses in Indonesia,” Energy Build. 36, 614-626, (2004) [CrossRef] [Google Scholar]
  14. J. F. Nicol, “Adaptive thermal comfort standards in the hot- humid tropics,” Energy Build., 36, 628-637, (2004) [CrossRef] [Google Scholar]
  15. E. Halawa and J. van Hoof, “The adaptive approach to thermal comfort: A critical overview,” Energy Build. 51, 101-110, (2012) [CrossRef] [Google Scholar]
  16. R. Yao, B. Li and J. Liu, “A theoretical adaptive model of thermal comfort - Adaptive predicted mean vote (APMV),” Build. Environ. 44, 2089-2096, (2009) [CrossRef] [Google Scholar]
  17. M. K. Singh, S. Mahapatra and S. Atreya, “Adaptive thermal comfort model for different climatic zones of North-East India,” Appl. Energy 88, 2420-2428, (2011) [CrossRef] [Google Scholar]
  18. H. B. Rijal, M. A. Humphreys and F. Nicol, “Chapter 17 Adaptive approaches to enhancing resilient thermal comfort in Japanese offices,” in Handbook of resilient thermal comfort, Routledge, pp. 279-299, (2022) [CrossRef] [Google Scholar]
  19. ASHRAE55-Standard, “Thermal environment conditions for human occupancy,” ASHRAE, Atlanta, Georgia (2004) [Google Scholar]
  20. M.A. Humphreys; J. F. Nicol; I.A. Raja “CIBSE Guide. The adaptive approach and field studies of thermal comfort,” Adv. Build. Energy Res. (2007) [Google Scholar]
  21. CEN-EN15251; “Indoor Environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics,” European committee for standardization, Brussels, Germany, (2007) [Google Scholar]
  22. M. Indraganti, R. Ooka and H. B. Rijal, G.S. Brager, “Adaptive model of thermal comfort for offices in hot and humid climates of India,” Build. Environ. 74, 39-53, (2014) [CrossRef] [Google Scholar]
  23. R. F. Rupp, R. de Dear and E. Ghisi, “Field study of mixed-mode office buildings in southern Brazil using an adaptive thermal comfort framework,” Energy Build. 158, 1475-1486, (2018) [CrossRef] [Google Scholar]
  24. H. B. Rijal, M. A. Humphreys and J. F. Nicol, “Towards an adaptive model for thermal comfort in Japanese offices,” Build. Res. Inf. 45, 7, 717-729, (2017) [CrossRef] [Google Scholar]
  25. D. H. C. Toe and T. Kubota, “Development of an adaptive thermal comfort equation for naturally ventilated buildings in hot-humid climates using ASHRAE RP-884 database,” Front. Arch. Res. 2, 278-291, (2013) [Google Scholar]
  26. S. Barlow and D. Fiala, “Occupant comfort in UK offices- How adaptive comfort theories might influence future low energy office refurbishment strategies,” Energy Build. 39, 837-846, (2007) [CrossRef] [Google Scholar]
  27. S. A. AI-Sanea and M.F. Zedan, “Optimized monthly fixed thermostat setting scheme for maximum energy savings and thermal comfort in air conditioned spaces,” Appl. Energy 85, 326-346, (2008) [CrossRef] [Google Scholar]
  28. X. Xu, P. J. Culligan and J. E. Taylor, “Energy saving alignment strategy: Achieving energy efficiency in urban buildings by matching occupant temperature preferences with a building's indoor thermal environment,” Appl. Energy 123, 209-219, (2014) [CrossRef] [Google Scholar]
  29. L. Perez-Lombard, J. Ortiz and C. Pout, “A review on buildings energy consumption information,” Energy Build. 40, pp. 394-398, (2008) [CrossRef] [Google Scholar]
  30. P. Lamsal, S. B. Bajracharya and H. B. Rijal, “A review on adaptive thermal comfort of office building for energy-saving building design,” Energies, 16, 1524, (2023) [CrossRef] [Google Scholar]
  31. T. Goto, T. Mitamura, H. Yoshino, A. Tamura and E. Inomata, “Long-term field survey on thermal adaptation in office buildings in Japan,” Build. Environ. 42, pp. 3944-3954, (2007) [CrossRef] [Google Scholar]
  32. M. Indraganti, R. Ooka and H. B. Rijal, “Thermal comfort in offices in summer: Findings from a field study under the 'setsuden' conditions in Tokyo, Japan,” Build. Environ. 61, 114-132, (2013) [CrossRef] [Google Scholar]
  33. S. A. Damiati, S. A. Zaki, H. B. Rijal and S. Wonorahardjo, “Field study on adaptive thermal comfort in office buildings in Malaysia, Indonesia, Singapore, and Japan during hot and humid season,” Build. Environ. 109, 208-223, (2016) [CrossRef] [Google Scholar]
  34. M. S. Mustapa, S. A. Zaki, H. B. Rijal, A. Hagishima and M. S. M. Ali, “Thermal comfort and occupant adaptive behaviour in japanese university buildings with free running and cooling mode offices during summer,” Build. Environ. 105, 332-342, (2016) [CrossRef] [Google Scholar]
  35. M. Takasau, R. Ooka, H. B. Rijal and M. Indraganti, M.K. Singh, “Study on adaptive thermal comfort in Japanese offices under various operation modes,” Build. Environ. 118, 273-288, (2017) [CrossRef] [Google Scholar]
  36. S. Dhaka, J. Mathur and G. Brager, “Assessment of thermal environmental conditions and quatification of thermal adaptation in naturally ventilated buildings in composite climate of India,” Build. Environ. 86, 17-28, (2015) [CrossRef] [Google Scholar]
  37. S. Dhaka and J. Mathur, “Quantification of thermal adaptation in air-conditioned buildings of composite climate, India,” Build. and Environ. 112, 296-307, (2017) [CrossRef] [Google Scholar]
  38. S. Kumar, M. K. Singh, V. Loftness, J. Mathur and S. Mathur, “Thermal comfort assessment and characteristics of occupant's behaviour in naturally ventilated buildings in composite climate of India,” Energy Sustain. Dev. 33, 108-121, (2016) [CrossRef] [Google Scholar]
  39. M. K. Singh, R. Ooka, H.B. Rijal and M. Takasu, “Adaptive thermal comfort in the offices of North-East India in autumn season,” Build. Environ. 124, 14-30, (2017) [CrossRef] [Google Scholar]
  40. S. Thapa, A. K. Bansal and G. K. Panda, “Thermal comfort in naturally ventilated office buildings in cold and cloudy climate of Darjeeling, India - An adaptive approach,” Energy Build. 160, 44-60,(2017) [Google Scholar]
  41. S. Manu, Y. Shukla, R. Rawal, L. E. Thomas and R. de Dear, “Field studies of thermal comfort across multiple climate zones for the subcontinent: India Model for Adaptive Comfort (IMAC),” Build. and Environ. 98, 55-70, (2016) [CrossRef] [Google Scholar]
  42. T. H. Karyono, “Report on thermal comfort and building energy studies in Jakarta-Indonesia,” Build. Environ. 35, 77-90, (2000) [CrossRef] [Google Scholar]
  43. R.J. de Dear, K.G. Leow and S.C. Foo, “Thermal comfort in the humid tropics: Field experiments in air conditioned and naturally ventilated buildings in Singapore,” International Journal of Biometeorology, vol. 34, pp. 259-265, (1991) [CrossRef] [Google Scholar]
  44. Z. Wu, N. Li, P. Wargocki, J. Peng, J. Li and H. Cui, “Field study on thermal comfort and energy saving potential in 11 split air-conditioned office buildings in Changsha, China,” Energy, 182, 471-482, (2019) [CrossRef] [Google Scholar]
  45. Z. Wang, A. Li, J. Ren and Y. He, “Thermal adaptation and thermal environment in university classrooms and offices in Harbin,” Energy Build. 77, 192-196, (2014) [CrossRef] [Google Scholar]
  46. E. Barbadilla-Martin, J. M. S. Lissen, J. G. Martin, P. Aparicio-Ruiz and L. Brotas, “Field study on adaptive thermal comfort in mixed mode office buildings in southwestern area of Spain,” Build. Environ. 123, 163-175, (2017) [CrossRef] [Google Scholar]
  47. K. Cena and R. de Dear, “Thermal comfort and behavioral strategies in office buildings located in a hot-arid climate,” J. Therm. Biol. 26, 409-414, (2001) [CrossRef] [Google Scholar]
  48. G. Schiller, E. Arens, F. Bauman, C. Benton, M. Fountain and T. Doherty, “A field study of thermal environments and comfort in office buildings,” ASHRAE Trans. 94, 2, (1988) [Google Scholar]
  49. M. Trebilcock, J. Soto-Munoz and J. Piggot-Navarrete, “Evaluation of thermal comfort standards in office buildings of Chile: Thermal sensation and preference assessment,” Build. Environ. 183, 107-158, (2020) [Google Scholar]
  50. P. Fanger, Thermal comfort analysis and applications in environmental engineering, Copenhagen: Danish Technical Press, (1970) [Google Scholar]
  51. M. Indraganti, R. Ooka and H. B. Rijal, “Field investigation of comfort temperature in Indian office buildings: A case of Chennai and Hyderabad,” Build. and Environ. 65, 195-214, (2013) [CrossRef] [Google Scholar]
  52. A. T. Nguyen, M. K. Singh and S. Reiter, “An adaptive thermal comfort model for hot humid South East Asia,” Build. Environ. 56, pp. 291-300, (2012) [CrossRef] [Google Scholar]
  53. M. A. Humphreys and J. F. Nicol, “An investigation into thermal comfort of office workers,” JLHVE, 38, 181-189, (1970) [Google Scholar]
  54. F. Black, “Desirable temperatures in offices,” JLHVE, 22, 319-328, (1954) [Google Scholar]
  55. E. Grandjean, “Raumklimatische Untersuchungen in Buros wahrend der warmen Jahreszeit, Schweiz BI,” Heiz Luft Haustechn, 19, 4, 118-123, (1968) [Google Scholar]
  56. E. Grandjean, “Raumklimatische Wirkungen vershiedener Heizsysteme in Buros, Schweiz BI,” Heiz- Luft, 3, 6, 18-23, (1966) [Google Scholar]
  57. M. E. Hindmarsh and R. K. Macpherson, “Thermal comfort in Australia,” Aust. J.Sci. 24, 8, 335-339, (1962) [Google Scholar]
  58. E. R. Ballantyne, R. K. Hill and J. W. Spencer, “Probit analysis of thermal sensation assessments,” Int. J. Biometeorol. 21, 29-43, (1977) [CrossRef] [PubMed] [Google Scholar]
  59. F. M. Wong, “The significance of work comfort in architecture,” Arch. Sci. Rev. 10, 4, 119-130, (1967) [CrossRef] [Google Scholar]
  60. F. P. Ellis, “Thermal comfort in warm humid atmospheres- Observations on groups and individuals in Singapore,” J. Hyg., vol. 51, 386-404, (1953) [CrossRef] [PubMed] [Google Scholar]
  61. J. F. Nicol, “An analysis of some observations of thermal comfort in Roorkee, India and Baghdad, Iraq,” Ann. Hum. Biol., 1, 4, 411-426, (1974) [CrossRef] [PubMed] [Google Scholar]
  62. M. A. Humphreys, “Outdoor temperatures and comfort indoors,” Batiment Int. Build. Res. Pract., 6, 2, 92-105, (1978) [CrossRef] [Google Scholar]
  63. H. B. Rijal, M. Honjo, R. Kobayashi and T. Nakaya, “Investigation of comfort temperature, adaptive model and the window-opening behaviour in Japanese houses,” Arch. Sci. Rev. 56, 1, 54-69, (2013) [CrossRef] [Google Scholar]
  64. H. B. Rijal, H. Yoshida and N. Umemiya, “Seasonal and regional differences in neutral temperatures in Nepalese vernacular houses,” Build. Environ. 45, 2743-2753, (2010) [CrossRef] [Google Scholar]
  65. J. F. Nicol and S. Roaf, “Pioneering new indoor temperature standards: The Pakistan project,” Energy Build. 23, 169-174, (1996) [CrossRef] [Google Scholar]
  66. S. Heidari and S. Sharples, “A comparative analysis of short-term and long-term thermal comfort surveys in Iran,” Energy Build. 34, 607-614, (2002) [CrossRef] [Google Scholar]
  67. A. Auliciems and R. de Dear, “Air conditioning in Australia I - Human thermal factors,” Arch. Sci. Rev. 29, 67-75, (2011) [Google Scholar]
  68. A. Auliciems, “Airconditioning in Australia III - Thermobile controls,” Arch. Sci. Rev. 33, 43-48, (1990) [CrossRef] [Google Scholar]
  69. T. Hoyt, K. H. Lee, H. Zhang, E. Arens and T. Webster “Energy savings from extended air temperature setpoints and reductions in room air mixing,” In Proceedings of the International Conference on Environmental Ergonomics, Boston, (2009) [Google Scholar]
  70. R. Saidur, “Energy consumption, energy savings, and emission analysis in Malaysian office buildings,” Energy Policy, 37, 4104-4113, (2009) [CrossRef] [Google Scholar]
  71. T. T. Chow and J. C. Lam, “Thermal comfort and energy conservation in commercial building in Hong Kong,” Arch. Sci. Rev. 35, pp. 67-72, (2011) [Google Scholar]
  72. E. Arens, M. A. Humphreys, R. de Dear and H. Zhang, “Are 'class A' temperature requirements realistic or desirable?,” Build. Environ. 45, 4-10, (2010) [CrossRef] [Google Scholar]
  73. A. Ghahramani, K. Zhang, K. Dutta, Z. Yang and B. Becerik-Gerber, “Energy savings from temperature setpoints and deadband: Quantifying the influence of building and system properties on savings,” Appl. Energy, 165, 930-942, (2016) [CrossRef] [Google Scholar]
  74. N. Yamtraipat, J. Khedari, J. Hirunlabh and J. Kunchornrat, “Assessment of Thailand indoor set-point impact on energy consumption and environment,” Energy Policy, 34, 765-770, (2006) [CrossRef] [Google Scholar]
  75. S. Shahzad, J.K. Calautit, B.R Hughes, B.K. Satish and H. B. Rijal, “Patterns of thermal preference and visual thermal landscaping model in the workplace,” Appl. Energy, 255, 113674, (2019) [CrossRef] [Google Scholar]
  76. H. Zhang, E. Arens, D. E. Kim, E. Buchberger, F. Bauman and C. Huizenga, “Comfort, perceived air quality, and work performance in a low power task- ambient conditioning system,” Build. Environ. 45, 1, 29-39, (2009) [Google Scholar]
  77. J. F. Nicol, M. A. Humphreys and S. Roaf, Adaptive thermal comfort : Principles and practice ; Routledge, Taylor & Francis Group,(2012) [CrossRef] [Google Scholar]
  78. C. Roussac, J. Steinfeld and R. de Dear, “A preliminary evaluation of two strategies for raising indoor air temperature setpoints in office buildings,” Arch. Sci. Rev. 54, 148-156, (2011) [CrossRef] [Google Scholar]
  79. H. B. Rijal, K. Yoshida, M. A. Humphreys and J. F. Nicol, “Develeopment of an adaptive thermal comfort model for energy-saving building design in Japan,” Arch. Sci. Rev. (2020) [Google Scholar]
  80. L. Yang, H. Yan and J. C. Lam, “Thermal comfort and building energy consumptions- A review,” App. Energy, 115, 164-173, (2014) [CrossRef] [Google Scholar]
  81. M. Rahim and F. Marasabessy, “Evaluation of natural ventilation characteristics on the Sultanate of Ternate Mosque,” in IOP Conf. Ser. Mater. Sci. Eng. (2019) [Google Scholar]
  82. C. Allocca, Q. Chen and L. R. Glicksman, “Design analyis of single - Sided natural ventilation,” Energy Build. 35, 8, 785-795, (2003) [CrossRef] [Google Scholar]
  83. Z. Tong, Y. Chen, A. Malkawi, Z. Liu and R. B. Freeman, “Energy saving potential of natural ventilation in China: The impact of ambient air pollution,” App. energy, 179, 660-668, (2016) [CrossRef] [Google Scholar]
  84. N. Artmann, H. Manz and P. Heiselberg, “Climatic potential for passive cooling of buildings by night time ventilation in Europe,” App. Energy, 84, 187-201, (2007) [CrossRef] [Google Scholar]
  85. J. W. Axley, “Application of natural ventilation for U.S. commercial buildings - Climate suitability design strategies & methods modeling studies,” U.S. Department of Commerce, (2001) [Google Scholar]
  86. E. Gratia and A. De Herde, “Natural cooling strategies efficiency in an office building with a double-skin facade,” Energy Build. 36, pp. 1139-1152, (2004) [CrossRef] [Google Scholar]
  87. M. Z. I. Bangalee, J. J. Miau, S. Y. Lin and M. Ferdows, “Effects of lateral window position and wind direction on wind -driven natural cross ventilation of a building: A computational approach,” J. Com. Eng. 1, 1-15, (2014) [Google Scholar]
  88. J. F. Busch, “A tale of two populations: thermal comfort in air- conditioned and naturally ventilated offices in Thailand,” Energy Build., 18, 235-249, (1992) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.