Open Access
Issue |
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
|
|
---|---|---|
Article Number | 01105 | |
Number of page(s) | 6 | |
Section | Indoor Environmental Quality (IEQ), Human Health, Comfort and Productivity | |
DOI | https://doi.org/10.1051/e3sconf/202339601105 | |
Published online | 16 June 2023 |
- A.K. Mishra, M.G.L.C. Loomans, J.L.M. Hensen, Thermal comfort of heterogeneous and dynamic indoor conditions—An overview. Build. Environ. 109, 82-100 (2016) [CrossRef] [Google Scholar]
- B. Yang, X. Li, Y. Hou, A. Meier, X. Cheng, J.-H. Choi, F. Wang, H. Wang, A. Wagner, D. Yan, A. Li, T. Olofsson, H. Li, Non-invasive (non-contact) measurements of human thermal physiology signals and thermal comfort/discomfort poses-A review. Energy Build. 224, 110261 (2020) [CrossRef] [Google Scholar]
- J. Kim, S. Schiavon, G. Brager, Personal comfort models– A new paradigm in thermal comfort for occupant-centric environmental control. Build. Environ. 132, 114-124 (2018) [CrossRef] [Google Scholar]
- O. P. Fanger, Thermal comfort: analysis and applications in environmental engineering. (New York: McGrawHill Book Company (1970) [Google Scholar]
- T. Cheung, S. Schiavon, T. Parkinson, P. Li, G. Brager, Analysis of the accuracy on PMV – PPD model using the ASHRAE Global Thermal Comfort Database II. Build. Environ. 153, 205- 217 (2019) [CrossRef] [Google Scholar]
- Y. Jiao, H. Yu, Y. Yu, Z. Wang, Q. Wei, Adaptive thermal comfort models for homes for older people in Shanghai, China. Energy Build. 215, 109918 (2020) [CrossRef] [Google Scholar]
- W.W. Che, C.Y. Tso, L. Sun, D.Y.K. Ip, H. Lee, C.Y.H. Chao, A.K.H. Lau, Energy consumption, indoor thermal comfort and air quality in a commercial office with retrofitted heat, ventilation and air conditioning (HVAC) system. Energy Build. 201, 202-215 (2019) [CrossRef] [Google Scholar]
- S. Miyata, J. Lim, Y. Akashi, Y. Kuwahara, K. Tanaka, Fault detection and diagnosis for heat source system using convolutional neural network with imaged faulty behavior data. Sci. Technol. Built. Environ. 26, 1, 52-60 (2020) [CrossRef] [Google Scholar]
- N. Forcada, M. Gangolells, M. Casals, B. Tejedor, M. Macarulla, K. Gaspar, Summer thermal comfort in nursing homes in the Mediterranean climate. Energy Build. 229, 110442 (2020) [CrossRef] [Google Scholar]
- W. Guo, L. Jiang, B. Cheng, Y. Yao, C. Wang, Y. Kou, S. Xu, D. Xian, A study of subtropical park thermal comfort and its influential factors during summer. J. Therm. Biol. 109, 103304 (2022) [CrossRef] [Google Scholar]
- D.M. Rowe, Activity rates and thermal comfort of office occupants in Sydney, J. Therm.Biol. 26, 4-5, 415-418 (2001) [CrossRef] [Google Scholar]
- G. Guevara, G. Soriano, I. Mino-Rodriguez, Thermal comfort in university classrooms: An experimental study in the tropics. Build. Environ. 187, 107430 (2021) [CrossRef] [Google Scholar]
- Q. Xue, X. Yang, F. Wu, A two-stage system analysis of real and pseudo urban human settlements in China. J. Clean. Prod. 29, 126272, (2021) [CrossRef] [Google Scholar]
- Z. Wang, T. Hong, Learning occupants’ indoor comfort temperature through a Bayesian inference approach for office buildings in United States. Renew. Sust. Energ. Rev. 119, 109593 (2020) [CrossRef] [Google Scholar]
- H. Du, Z. Lian, D. Lai, W. Liu, L. Duanmu, Y. Zhai, B. Cao, Y. Zhang, X. Zhou, Z. Wang, X. Zhang, Method of determining acceptable air temperature thresholds in Chinese HVAC buildings based on a data-driven model. Energy Build. 241, 110920 (2021) [CrossRef] [Google Scholar]
- R.F. Rupp, J. Kim, E. Ghisi, R. de Dear, Thermal sensitivity of occupants in different building typologies: The Griffiths Constant is a Variable. Energy Build. 200, 11-20 (2019) [CrossRef] [Google Scholar]
- S. Shan, E.-H. Yang, J. Zhou, V.W.-C. Chang. Human-building interaction under various indoor temperatures through neural-signal-signal electroencephalogram (EEG) methods. Build. Environ. 129, 46-53 (2018). [CrossRef] [Google Scholar]
- A.A. Shahbazi,V. Esfahanian. Reduced-order modeling of lead-acid battery using cluster analysis and orthogonal cluster analysis method. Int. J. Energy Res. 43, 13, 6779-6798 (2019) [Google Scholar]
- H. Bennetts, L.A. Martins, J. Van Hoof, V. Soerbato. Thermal Personalities of Older People in South Australia: A Personas-Based Approach to Develop Thermal Comfort Guidelines. Int. J. Environ. Res. Public Health, 17, 22, 8402 (2020) [CrossRef] [Google Scholar]
- Y.-H. Lin, K.-T. Tsai. Screening of Tree Species for Improving Outdoor Human Thermal Comfort in a Taiwanese City. Sustainability, 9, 3, 340, (2017) [CrossRef] [Google Scholar]
- M. Anjos, A.C. Targino, P. Krecl, G.Y. Oukawa, R.F. Braga. Analysis of the urban heat island under different synoptic patterns using local climate zones. Build. Environ. 185, 107268 (2020) [CrossRef] [Google Scholar]
- CLIMATEDATA.ORG, Clima Ponta Grossa (Brasil), <https://pt.climate-data.org/america-dosul/brasil/parana/ponta-grossa-4493/> (Accessed 26 november 2022). [Google Scholar]
- A.M. Bueno, I. M. da Luz, I. L. Niza, E.E. Broday. Hierarchical and K-means clustering to assess thermal dissatisfaction and productivity in university classrooms. Build. Environ. 233, 110097 (2023) [CrossRef] [Google Scholar]
- P.F.C. Pereira, E.E. Broday. Determination of Thermal Comfort Zones through Comparative Analysis between Different Characterization Methods of Thermally Dissatisfied People, Buildings. 11, 8, 320 (2021) [Google Scholar]
- International Organization for Standardization, ISO 7730 Ergonomics of the thermal environment – analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, Genève, Switzerland (2005) [Google Scholar]
- International Organization for Standardization, ISO 10551 Ergonomics of the physical environment – subjective judgement scales for assessing physical environments, Genève, Switzerland (2019) [Google Scholar]
- International Organization for Standardization, ISO 7726 Ergonomics of the thermal environments instruments for measuring physical quantities, Genève, Switzerland (1998) [Google Scholar]
- American Society of Heating, Refrigerating and Air Conditioning Engineers, Ashrae standard 55-2020 Thermal environmental conditions for human occupancy, Atlanta (2021) [Google Scholar]
- International Organization for Standardization, ISO 9920 Ergonomics of the thermal environment – estimation of thermal insulation and water vapour resistance of a clothing ensemble, Genève, Switzerland (2007) [Google Scholar]
- M. Zhou, T.T.T. Huynh, P.W.G.G. Koerkamp, I.D.E. Van Dixhoorn, T. Amon, A.J. Aarnink. Effects of increasing air temperature on skin and respiration heat loss from dairy cows at different relative humidity and air velocity levels. J. Dairy Sci. 105, 8, 7061–7078 (2022) [CrossRef] [Google Scholar]
- L.K. Singh, A.K. Gupta, A. K. Sharma. Hybrid thermal management system for a lithium-ion battery module: Effect of cell arrangement, discharge rate, phase change material thickness and air velocity. J. Energy Storage. 52, 104907 (2022) [CrossRef] [Google Scholar]
- International Organization for Standardization, ISO 8996 Ergonomics aof the thermal environment – determination of metabolic rate, Genève, Switzerland (2004) [Google Scholar]
- CBE thermal comfort tool. <https://comfort.cbe.berkeley.edu/> (Accessed 16 august 2022) [Google Scholar]
- P. Mičko, A. Kapjor, M. Holučbík, D. Hečko, Experimental Verification of CFD Simulation When Evaluating the Operative Temperature and Mean Radiation Temperature for Radiator Heating and Floor Heating. Processes. 9, 1041(2021) [CrossRef] [Google Scholar]
- S. Liang, B. Li, X. Tian, Y. Cheng, C. Liao, J. Zhang, D. Liu. Determining optimal parameter ranges of warm supply air for stratum ventilation using Pareto-based MOPSO and cluster analysis. J. Build. Eng. 37, 102145 (2021) [CrossRef] [Google Scholar]
- D. Teli, T. Psomas, S. Langer, A. Trüschel, J.-O. Dalenbäck. Drivers of winter indoor temperatures in Swedish dwellings: Investigating the tails of the distribution. Build. Environ. 202, 108018 (2021) [CrossRef] [Google Scholar]
- J.A. Acero, E.J.K. Koh, G. Pignatta, L.K. Norford. Clustering weather types for urban outdoor thermal comfort evaluation in a tropical area. Theor. Appl. Climatol. 139, 1-2 (2020) [Google Scholar]
- C. Chang, N. Zhu, K. Yang, F. Yang. Data and analytics for heating energy consumption of residential buildings: The case of a severe cold climate region of China. Energy Build. 172, 104-115 (2018) [CrossRef] [Google Scholar]
- C.-F. Chen, M. De Simone, S. Yilmaz, X. Xu, Z. Wang, T. Hong, Y. Pan. Intersecting heuristic adaptive strategies, building design and energy saving intentions when facing discomfort environment: A cross-country analysis. Build. Environ. 204, 108129 (2021) [CrossRef] [Google Scholar]
- Maroco, J. Análise estatística com utilização do SPSS. 3 ed. Lisboa: Edições Sílabo (2007) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.