Open Access
Issue |
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
|
|
---|---|---|
Article Number | 01115 | |
Number of page(s) | 7 | |
Section | Indoor Environmental Quality (IEQ), Human Health, Comfort and Productivity | |
DOI | https://doi.org/10.1051/e3sconf/202339601115 | |
Published online | 16 June 2023 |
- Y. C. Chen, A study of Evaluating Fungal Growth and Influencing Factors on Building Materials, 13-43 December 2012, (2012). [Google Scholar]
- J. M. Attipoe, S. Sarri, A. M. Veijalainen, P. Pasanen, J. Keskinen, J. T. T. Leskinen, T. Reponen, Release and characteristics of fungal fragments in various conditions, Sci. Total Environ. 93 (2016) 234-243. [CrossRef] [Google Scholar]
- W. Y. Chen, The study of nano metal to enhance mildew resistance ability of healthy green building paint materials, 1-16 July 2016, (2016). [Google Scholar]
- H. T. Tsai, The study of moisture buffering capacity and mold growth in commonly used indoor building materials under hot-humid climate, 1-2 July 2013, (2013). [Google Scholar]
- K. N. Hsu, The study of nano metal to enhance mildew resistance ability of indoor building materials, 7-20 August 2013, (2013). [Google Scholar]
- Y. C. Fang, A Study of Fungal Growth on Surface Building Materials of Interior Walls, 10-34 June 2015, (2015). [Google Scholar]
- Y. C. Chen, W. C. Shao, K. P. Yu, A Study of Evaluating Fungal Growth and Influencing Factors on Interior Decoration Materials, J. Archit. 99 (2017) 37-54. [Google Scholar]
- J. E. Lee, B. U. Lee, G. N. Bae, J. H. Jung, Evaluation of aerosolization characteristics of biocontaminated particles from flood-damaged housing materials, J. Aerosol Sci. 106 (2017) 93-99. [CrossRef] [Google Scholar]
- C. L. Jones, Mould in building disputes, Int. J. Bacteriol. Mycol. 6(4) (2018). [Google Scholar]
- B. Hegarty, U. H. Shaughnessy, R. J. Shaughnessy, J. Peccia, Spatial Gradients of Fungal Abundance and Ecology throughout a Damp Building, Environ. Sci. Technol. Lett. 6 (2019) 329-333. [CrossRef] [Google Scholar]
- C. F. Harding, C. L. Pytte, K. G. Page, K. J. Ryberg, E. Normand, G. J. Remigio, R. A. Destefano, D. B. Morris, J. Voronina, A. Lopez, L. A. Stalbow, E. P. Williams, N. Abreu, Mold inhalation causes innate immune activation, neural, cognitive and emotional dysfunction, Brain, Behav., Immun. 87 (2020) 218-228. [Google Scholar]
- M. E. Norberg, M. Taubel, S. Heikkinen, K. Jalkanen, A. Kolio, M. Stranger, H. Leppanen, A. Hyvarinen, K. Huttunen, Toxicological transcriptome of human airway constructs after exposure to indoor air particulate matter In search of relevant pathways of moisture damage associated health effects, Environ. Int. 158 (2022) 106997. [CrossRef] [Google Scholar]
- N. Kazemian, S. Pakpour, A. S. Milani, J. Klironomos, Environmental factors influencing fungal growth on gypsum boards and their structural biodeterioration: A university campus case study, journals.plos.org. 14(8) (2019). [Google Scholar]
- A. Brambilla, A. Sangiorgio, Mould growth in energy efficient buildings: Causes, health implications, and strategies to mitigate the risk, Renewable Sustainable Energy Rev. 132 (2020) 110093. [CrossRef] [Google Scholar]
- Z. Iyigundogdu, I, Saribas, The effect of various boron compounds on the antimicrobial activity of hardened mortars, Constr. Build. Mater. 351 (2022) 128958. [CrossRef] [Google Scholar]
- C. P. Hoang, K. A. Kinney, R. L. Corsi, P. J. Szaniszlo, Resistance of green building materials to fungal growth, Int. Biodeterior. Biodegradation, 64 (2010) 104-113. [CrossRef] [Google Scholar]
- A. Karimiyan, H. Najafzadeh, M. Ghorbanpour, S. H. H. Moghaddam, Antifungal Effect of Magnesium Oxide, Zinc Oxide, Silicon Oxide, and Copper Oxide Nanoparticles Against Candida albicans, Zahedan. J. Res. Med. Sci. 17(10) (2015) 2179. [CrossRef] [Google Scholar]
- A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, D. Mohamad, Review on Zinc Oxide Nanoparticles Antibacterial Activity and Toxicity Mechanism, Nanomicro Lett. 7(3) (2015) 219-242. [Google Scholar]
- G. V. Vimbela, S. M. Ngo, C. Fraze, L. Yang, D. A. Stout, Antibacterial properties and toxicity from metallic nanomaterials, Int. J. Nanomed. 12 (2017) 3941-3965. [CrossRef] [Google Scholar]
- A. B. Sengul, E. Asmatulu, Toxicity of metal and metal oxide nanoparticles: a review, Environ. Chem. Lett. 18 (2020) 1659-1863. [CrossRef] [Google Scholar]
- C. Hoang, T. Nguyen, D. Stanley, A. Persily, R. L. Corsi, Effect of ozonation on fungal resistance of bamboo and oak flooring materials, Build. Sci. 81 (2014) 226-233. [Google Scholar]
- M. Remondino, L. Valdenassi, Different Uses of Ozone Environmental and Corporate Sustainability. Literature Review and Case Study, Sustainability 10(12) (2018) 4783. [Google Scholar]
- R. J. Rowen, Ozone therapy as a primary and sole treatment for acute bacterial infection, Med. Gas. Res. 8(3) (2018) 121-124. [CrossRef] [Google Scholar]
- K. Rangel, F. O. Cabral, G. C. Lechuga, J. P. R. S. Carvalho, M. H. S. V. Boas, V. Midlej, S. G. D. Simone, Detrimental Effect of Ozone on Pathogenic Bacteria, Microorganisms. 10(1) (2022) 40. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.