Open Access
Issue
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
Article Number 02015
Number of page(s) 6
Section Ventilation and Airflow in Buildings
DOI https://doi.org/10.1051/e3sconf/202339602015
Published online 16 June 2023
  1. Kobayashi T.: 130 years history of building natural ventilation research in Japan -A narrative review, Journal of Environmental Engineering (Transactions of AJI), 83,751,749-759, Japan (2018) [CrossRef] [Google Scholar]
  2. AIJ Architectural Environmental Engineering Committee: Design planning pamphlets, 3, Shokokusha, Japan (1957) [Google Scholar]
  3. AIJ Architectural Environmental Engineering Committee: Design planning pamphlets, 18, Shokokusha, Japan (1965) [Google Scholar]
  4. Kurabuchi T., Ohba M., Endo T., Akamine Y.: Local dynamic similarity concept and underlying wind tunnel tests J. Environ. Eng., AIJ, 607, 37-41 (2006) [CrossRef] [Google Scholar]
  5. Oke. T. R.: c 11, 103-113 (1988) [Google Scholar]
  6. Ikegaya N., Ikeda Y., Hagishima A., and Tanimoto J.: Evaluation of rare velocity at a pedestrian level due to turbulence in a neutrally stable shear flow over simplified urban arrays,J. Wind Eng. Ind. Aerodyn., 171, 137-147 (2017) [CrossRef] [Google Scholar]
  7. Tominaga Y., Blocken B.: Wind tunnel experiments on cross-ventilation flow of a generic building with contaminant dispersion in unsheltered and sheltered conditions, Build. Environ., 92, 452-461 (2015) [CrossRef] [Google Scholar]
  8. Ikegaya N., S. Hasegawa, A. Hagishima, Time-resolved particle image velocimetry for cross-ventilation flow of generic block sheltered by urban-like block arrays, Build. Environ., 147, 132-145, (2019) [CrossRef] [Google Scholar]
  9. Adachi Y., Ikegaya N., Satonaka H., Hagishima A.: Numerical simulation for cross-ventilation flow of generic block sheltered by urban-like block array, Build. Environ., 185, 107174 (2020) [CrossRef] [Google Scholar]
  10. Shirzadi M., Tominaga Y., Mirzaei P.A.: Experimental and steady-RANS CFD modelling of cross-ventilation in moderately-dense urban areas, Sustain. Cities Soc. 52, 101849, (2020) [CrossRef] [Google Scholar]
  11. Fernandez B.K., Ikegaya N., Ito K., Chen Q.: Age of air, purging flow rate, and net escape velocity in a cross-ventilation model sheltered by urban-like blocks using LES. Build. Environ., 226, 109759, (2022) [CrossRef] [Google Scholar]
  12. Murakami S., Kato S.: New Scales for Ventilation Efficiency and Calculation Method by Means of 2-Dimensional Numerical Simulation for Turbulent Flow: Study on Evaluation of Ventilation Efficiency in Room, Trans. of SHARE, 32, 91-102, (1986) [Google Scholar]
  13. Menter, F.R.: Two-Equation Eddy-Viscosity Turbulence Model for Engineering Applications. AIAA journal, 32, 8, 1598-1605, (1994)/ [CrossRef] [Google Scholar]
  14. Murakami Y., Ikegaya N.: Coupled Simulations of Indoor-Outdoor Flow Fields for Cross-ventilation of a buildings in a Simplified Urban Array (2018). [Google Scholar]
  15. Hooff van T., Blocken B., Tominaga Y.: On the accuracy of CFD simulations of cross-ventilation flows for a genetic isolated building: Comparison of RANS, LES and experiments. Build. Environ., 114, 148-165, (2017). [CrossRef] [Google Scholar]
  16. Shirzadi M., Parham A. M., Mohammad N.: Deveg a Sysamework for Increasing the Accuracy of RANS Models for CFD Simulations of Atmospheric Boundary Layer. The 7th International Symposium on Computational Wind Engineering. South Korea. (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.