Open Access
Issue
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
Article Number 04011
Number of page(s) 7
Section Nearly Zero Energy Buildings and Smart Energy community (Micro to Macro-scale)
DOI https://doi.org/10.1051/e3sconf/202339604011
Published online 16 June 2023
  1. J. Zhao, J. “Jensen” Zhang, J. Grunewald, S. Feng, A probabilistic-based method to evaluate hygrothermal performance of an internally insulated brick wall, Build. Simul. 14 (2021) 283–299. https://doi.org/10.1007/s12273-020-0702-6. [CrossRef] [Google Scholar]
  2. W. Tang, C.I. Davidson, S. Finger, K. Vance, Erosion of limestone building surfaces caused by wind-driven rain: 1. Field measurements, Atmos. Environ. 38 (2004) 5589–5599. https://doi.org/10.1016/j.atmosenv.2004.06.030. [CrossRef] [Google Scholar]
  3. B. Blocken, J. Carmeliet, On the accuracy of wind-driven rain measurements on buildings, Build. Environ. 41 (2006) 1798–1810. https://doi.org/10.1016/j.buildenv.2005.07.022. [CrossRef] [Google Scholar]
  4. B. Blocken, J. Carmeliet, High-resolution wind-driven rain measurements on a low-rise building - Experimental data for model development and model validation, J. Wind Eng. Ind. Aerodyn. 93 (2005) 905–928. https://doi.org/10.1016/j.jweia.2005.09.004. [CrossRef] [Google Scholar]
  5. Kubilay, D. Derome, B. Blocken, J. Carmeliet, High-resolution field measurements of wind-driven rain on an array of low-rise cubic buildings, Build. Environ. 78 (2014) 1–13. https://doi.org/10.1016/j.buildenv.2014.04.004. [CrossRef] [Google Scholar]
  6. A. Kubilay, D. Derome, B. Blocken, J. Carmeliet, Wind-driven rain on two parallel wide buildings: Field measurements and CFD simulations, J. Wind Eng. Ind. Aerodyn. 146 (2015) 11–28. https://doi.org/10.1016/j.jweia.2015.07.006. [CrossRef] [Google Scholar]
  7. H. Ge, U.K. Deb Nath, V. Chiu, Field measurements of wind-driven rain on mid-and high-rise buildings in three Canadian regions, Build. Environ. 116 (2017) 228–245. https://doi.org/10.1016/j.buildenv.2017.02.016. [CrossRef] [Google Scholar]
  8. E. Cho, C. Yoo, M. Kang, S. uk Song, S. Kim, Experiment of wind-driven-rain measurement on building walls and its in-situ validation, Build. Environ. 185 (2020). https://doi.org/10.1016/j.buildenv.2020.107269. [Google Scholar]
  9. C. Chen, H. Zhang, C. Feng, Y. Xuan, T. Qian, J. Xie, Analysis of wind-driven rain characteristics acting on building surfaces in Shanghai based on long-term measurements, J. Build. Eng. 45 (2022). https://doi.org/10.1016/j.jobe.2021.103572. [Google Scholar]
  10. X.J. Wang, Q.S. Li, J.C. Li, Field measurements and numerical simulations of wind-driven rain on a low-rise building during typhoons, J. Wind Eng. Ind. Aerodyn. 204 (2020). https://doi.org/10.1016/j.jweia.2020.104274. [Google Scholar]
  11. ANSI/ASHRAE, Criteria for Moisture Control Design Analysis in Buildings, ASHRAE Stand. 160. (2009). [Google Scholar]
  12. E.N. ISO, 15927-3.(2009), Hygrothermal Perform. Build. Present. Clim. Data. Part. 3 (n.d.). [Google Scholar]
  13. A. Wygocka-Domagałło, H. Garbalińska, The effect of pore structure on the water sorption coefficient of cement mortars reinforced with 12 mm polypropylene fibres, Constr. Build. Mater. 248 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118606. [Google Scholar]
  14. S. Zhuang, Q. Wang, M. Zhang, Water absorption behaviour of concrete: Novel experimental findings and model characterization, J. Build. Eng. 53 (2022). https://doi.org/10.1016/j.jobe.2022.104602. [Google Scholar]
  15. İ. İnce, A. Bozdağ, M. Barstuğan, M. Fener, Evaluation of the relationship between the physical properties and capillary water absorption values of building stones by regression analysis and artificial neural networks, J. Build. Eng. 42 (2021). https://doi.org/10.1016/j.jobe.2021.103055. [Google Scholar]
  16. Astm, C. “Standard test method for density, absorption, and voids in hardened concrete.” C642-13 (2013)., n.d. [Google Scholar]
  17. I.S.O. 15148, Hygrothermal performance of building materials and products—Determination of water absorption coefficient by partial immersion, (2002). [Google Scholar]
  18. Kunzel, Hartwig M. "Simultaneous heat and moisture transport in building components." Fraunhofer Institute of building physics, Allemagne (1995). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.