Open Access
Issue
E3S Web Conf.
Volume 399, 2023
International Conference on Newer Engineering Concepts and Technology (ICONNECT-2023)
Article Number 01007
Number of page(s) 9
Section Electronics and Electical Engineering
DOI https://doi.org/10.1051/e3sconf/202339901007
Published online 12 July 2023
  1. Atwa, Y.M. & El-Saadany, E.F., Probabilistic Approach for Optimal Allocation of Wind-Based Distributed Generation in Distribution Systems. IET Renewable Power Generation, 5(1), p. 79, 2011. [CrossRef] [Google Scholar]
  2. Georgilakis, P.S., Member, S. & Hatziargyriou, N.D., Optimal Distributed Generation Placement in Power Distribution Networks: Models, Methods, and Future Research. IEEE Transactions on Power Systems, 28(3), pp. 3420–3428, 2013. [CrossRef] [Google Scholar]
  3. Aghaei, J. et al., Distribution expansion planning considering reliability and security of energy using modified PSO (Particle Swarm Optimization) algorithm. Energy, 65, pp. 398–411, 2014. [CrossRef] [Google Scholar]
  4. Beheshti, Z., Mariyam, S. & Shamsuddin, H., A review of population-based meta- heuristic algorithm. Int. J. Advance. Soft Comput. Appl., 5(March), pp. 1–32, 2013. [Google Scholar]
  5. Cardoso, G. et al., Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicle driving schedules. Energy, 64, pp. 17–30, 2014. [CrossRef] [Google Scholar]
  6. Cardoso, G., Stadler, M. & Bozchalui, M.C., Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules., October, 2013. [Google Scholar]
  7. Soares, J. et al., Application-Specific Modified Particle Swarm Optimization for energy resource scheduling considering vehicle-to-grid. Applied Soft Computing, 2013. [Google Scholar]
  8. Castillo, A. & O’Neill, R.P., Survey of Approaches to Solving the ACOPF: Optimal Power Flow Paper 4, pp. 1–49, 2013. [Google Scholar]
  9. Kramer, O., Ciaurri, D.E. & Koziel, S., Computational Optimization, Methods and Algorithms. In S. Koziel & X.-S. Yang, eds. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 61–83, 2011. [CrossRef] [Google Scholar]
  10. Blum, C. & Roli, A., Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison. ACM Computing Surveys, 35(3), pp. 268–308, 2003. [CrossRef] [Google Scholar]
  11. Chakravorty, M. & Das, D., Voltage stability analysis of radial distribution networks, 23, pp. 129–135. 2001. [Google Scholar]
  12. Ganguly, S., Bhattacharjee, D. & Nasipuri, M., 2016. Hybrid Soft Computing Approaches, [Google Scholar]
  13. Kennedy, J. & Eberhart, R., Particle Swarm Optimization. In IEEE Int Conf Neural Networks. pp. 1942–1948, 1995. [Google Scholar]
  14. A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, IEEE Transactions on evolutionary computation, vol. 8, no. 3, pp. 240–255, 2004. [CrossRef] [Google Scholar]
  15. S. Sultana and P. K. Roy, “Multi-objective quasi-oppositional teaching learning-based optimization for optimal location of distributed genera- tor in radial distribution systems,” International Journal of Electrical Power & Energy Systems, vol. 63, pp. 534–545, Dec. 2014 [CrossRef] [Google Scholar]
  16. Abri, R.S. Al, El-Saadany, E.F. & Atwa, Y.M., Optimal Placement and Sizing Method to Improve the Voltage Stability Margin in a Distribution System Using Distributed Generation. IEEE Transactions on Power Systems, 28(1), pp. 326–334, 2012. [Google Scholar]
  17. Moradi, M.; Abedini, M. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst., 34, 66–74, 2012. [CrossRef] [Google Scholar]
  18. Onlam, A.; Yodphet, D.; Chatthaworn, R.; Surawanitkun, C.; Siritaratiwat, A.; Khunkitti, P. Power Loss Minimization and Voltage Stability Improvement in Electrical Distribution System via Network Reconfiguration and Distributed Generation Placement Using Novel Adaptive Shuffled Frogs Leaping Algorithm. Energies, 12, 553, 2019. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.