Open Access
Issue |
E3S Web Conf.
Volume 399, 2023
International Conference on Newer Engineering Concepts and Technology (ICONNECT-2023)
|
|
---|---|---|
Article Number | 02010 | |
Number of page(s) | 11 | |
Section | Natural Resources Management | |
DOI | https://doi.org/10.1051/e3sconf/202339902010 | |
Published online | 12 July 2023 |
- Jain, A., Sarsaiya, S., Wu, Q., Lu, Y., Shi, J., A review of plant leaf fungal diseases and its environment speciation, Bioengineered, 10, 409–424 (2019). https://doi.org/10.1080/21655979.2019.1649520. [CrossRef] [PubMed] [Google Scholar]
- Liu, Linyi, Dong, Yingying, Huang, Wenjiang, Xiaoping, Du, Ren, Binyuan, Huang, Linsheng, Zheng, Qiong, Ma, Huiqin, 2020. A Disease Index for Efficiently Detecting Wheat Fusarium Head Blight Using Sentinel-2 Multispectral Imagery. 8. IEEE ccess, pp. 52181–52191. https://doi.org/10.1109/ACCESS.2020.2980310. [CrossRef] [Google Scholar]
- Mishra, P., Polder, G., Vilfan, N., 2020. Close range spectral imaging for disease detection in plants using autonomous platforms: a review on recent studies. Curr. Robot. Rep. 1, 43–48. [CrossRef] [Google Scholar]
- Nagaraju, M., Chawla, P., 2020. Systematic review of deep learning techniques in plant disease detection. Int. J. Syst. Assur. Eng. Manag. 11, 547–560. [CrossRef] [Google Scholar]
- Nagasubramanian, K., Jones, S., Singh, A.K., et al., 2019. Plant disease identification using explainable 3D deep learning on hyperspectral images. Plant Methods 15, 98. [CrossRef] [PubMed] [Google Scholar]
- Kulkarni, Anand H., Ashwin Patil, R.K., 2012. Applying image processing technique to detect plant diseases. Int. J. Mod. Eng. Res. 2(5), 3661–3664. [Google Scholar]
- Jasim, M.A., Tuwaijari, J.M.A.L., 2020. Plant leaf diseases detection and classification using image processing and deep learning techniques. International Conference on Computer Science and Software Engineering (CSASE), Duhok, Iraq, 2020, pp. 259–265 https://doi.org/10.1109/CSASE48920.2020.9142097. [Google Scholar]
- Sun, J., Yang, Y., He, X., Wu, X., 2020. Northern maize leaf blight detection under complex field environment based on deep learning. IEEE Access 8, 33679–33688 2020. https://doi.org/10.1109/ACCESS.2020.2973658. [CrossRef] [Google Scholar]
- Sinha, Shekhawat, R.S., 2020. Review of image processing approaches for detecting plant diseases in. IET Image Process. 14 (8), 1427–1439 196. https://doi.org/10.1049/ietipr.2018.6210 [CrossRef] [Google Scholar]
- Arora, J.; Agrawal, U. Classification of Maize leaf diseases from healthy leaves using Deep Forest. J. Artif. Intell. Syst. 2020, 2, 14–26. [Google Scholar]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [CrossRef] [Google Scholar]
- Rangarajan Aravind, K.; Raja, P. Automated disease classification in (Selected) agricultural crops using transfer learning. Autom. CasopisAutom. Mjer. Elektron. Ra’ cunarstvoKomun. 2020, 61, 260–272. [Google Scholar]
- Rangarajan, A.K.; Purushothaman, R. Disease classification in eggplant using pre-trained vgg16 and msvm. Sci. Rep. 2020, 10, 1–11. [NASA ADS] [CrossRef] [Google Scholar]
- Ghazi, M.M.; Yanikoglu, B.; Aptoula, E., Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing 2017, 235, 228–235. [CrossRef] [Google Scholar]
- Aliper A., Plis S., Artemov A., Ulloa A., Mamoshina P., Zhavoronkov A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Molecular Pharmaceutics. 2016; 13(7):2524–2530. [CrossRef] [PubMed] [Google Scholar]
- Zhao Z.-Q., Zheng P., Xu S.-T., Wu X., Object detection with deep learning: A review. IEEE Transactions on Neural Networks and Learning Systems. 2019; 30(11):3212–3232 [CrossRef] [PubMed] [Google Scholar]
- Advancements in Deep Learning Theory and Applications: Perspective in 2020 and beyond by MdNazmus Saadat and Muhammad Shuaib DOI: http://dx.doi.org/10.5772/intechopen.92271 [Google Scholar]
- Lazarovits G., Turnbull A., Johnston-Monje D., Plant health management: biological control of plant pathogens. In: Van Alfen N.K., editor. Encyclopedia of agriculture and food systems. New York, NY: Academic Press; 2014. p. 388–399. [CrossRef] [Google Scholar]
- Iqbal Z., Khan M.A., Sharif M., et al. An automated detection and classification of citrus plant diseases using image processing techniques: A review. Comput Electron Agric. 2018; 153:12–32. [CrossRef] [Google Scholar]
- Prado S., Li Y., Nay B. Chapter 8 - Diversity and ecological significance of fungal endophyte natural products. In: Ur-Rahman A., editor. Studies in natural products chemistry. Vol. 36. UK: Elsevier; 2012. p. 249–296. [CrossRef] [Google Scholar]
- Nair S.K., Prasanna B.M., Rathore R.S., et al. Genetic analysis of resistance to sorghum downy mildew andRajasthan downy mildew in maize (Zea mays L.). FieldCrops Res. 2004; 89(2-3):379–387. [Google Scholar]
- Gunen Y., Misirli A., Gulcan R. Leaf phenolic content of pear cultivars resistant or susceptible to fire blight. Sci Hort. 2005; 105(2):213–221 [Google Scholar]
- Gugino B.K., Carroll J.E., Widmer T.L., et al. Field evaluation of carrot cultivars for susceptibility to fungal leaf blight diseases in New York. Crop Prot. 2007; 26(5):709–714. [CrossRef] [Google Scholar]
- Abuley I.K., Nielsen B.J. Integrating cultivar resistance into the TOMCAST model to control early blight of potato, caused by Alternariasolani. Crop Prot. 2019; 117:69–76. [CrossRef] [Google Scholar]
- Masuya H., Kusunoki M., Kosaka H., et al. Haradamycesfoliicolaanam gen. et sp. nov., a cause of zonate leaf blight disease in Cornusflorida in Japan. Mycol Res. 2009; 113(2):173–181. [CrossRef] [Google Scholar]
- Abou-Taleb E.M., Aboshosha S.M., Sherif E.M.E., et al. Genetic diversity among late blight resistant and susceptible potato geno types. Saudi J Biol Sci. 2010; 17 (2):133–138. [CrossRef] [Google Scholar]
- Kiewnick A.B., Altenbach D., Oberhänsli T., et al. A rapid lateral-flow immunoassay for phytosanitary detection of Erwiniaamylovora and on-site fire blight diagnosis. J Microbiol Methods. 2011; 87(1):1–9 [CrossRef] [Google Scholar]
- Kumar, Ashok, Jat, S.L., Kumar, Ramesh and Yadav, O.P., Maize production systems for improving resource-use efficiency and livelihood security, Directorate of Maize Research, Pusa Campus, New Delhi - 110 012. ISBN: 978-81-928624-0-8. [Google Scholar]
- Johnson, K.B., and Temple, T.N., 2017. Induction of systemic acquired resistance aids restoration of tree health in field-grown pear and apple diseased with fire blight. Plant Disease 101: 1263–1268. [CrossRef] [PubMed] [Google Scholar]
- https://www.forestryimages.org/browse/detail.cfm?imgnum=1575129. [Google Scholar]
- http://vegetablemdonline.ppath.cornell.edu/PhotoPages/ImptDiseases/Celery/CeleryPhotos2.htm [Google Scholar]
- Leaf scorch caused by drought stress on dogwood (Cornusflorida), Joey Williamson, © 2014 HGIC, Clemson Extension. [Google Scholar]
- https://www.agric.wa.gov.au/plant-biosecurity/late-blight-potato-and-tomato-declared-pest [Google Scholar]
- Melanie L. Ivey, Assistant Professor, Department of Plant Pathology, The Ohio State University-Ohio Agricultural Research and Development Center, Wooster, OH. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.