Open Access
E3S Web Conf.
Volume 399, 2023
International Conference on Newer Engineering Concepts and Technology (ICONNECT-2023)
Article Number 03002
Number of page(s) 15
Section Material Science
Published online 12 July 2023
  1. ACI Committee 116 ACI 116R-85, Cement and Concrete Terminology (Michigan). (1985) [Google Scholar]
  2. Anon ASTM G1-03—Standard practice for preparing, cleaning, and evaluating corrosion test specimens (2017) [Google Scholar]
  3. Alcantara N.P.D., Jr. Gonçalves, L., Jr. Simulation of an ECT Sensor to inspect the reinforcement of concrete structures. COMSOL Conference (2015) [Google Scholar]
  4. ASTM, C. Standard test method for corrosion potentials of uncoated reinforcing steel in concrete. ASTM International: West Conshohocken, PA, USA. (2015). [Google Scholar]
  5. Ahmad, S. Reinforcement corrosion in concrete structures, its monitoring and service life prediction—a review. Cement and concrete composites, 25(4-5), 459–471. (2003). [CrossRef] [Google Scholar]
  6. Anon ISO 8044:2015, Corrosion of metals and alloys— basic terms and defnitions. Int. Organ. Stand. 24. (2015) [Google Scholar]
  7. Barbhuiya S., Chow P., Memon, S. Microstructure, hydration and nanomechanical properties of concrete containing metakaolin. Constr Build Mater 95:696–702. (2015) [CrossRef] [Google Scholar]
  8. Batis G., Pantazopoulou P., Tsivilis S., Badogiannis E. The efect of metakaolin on the corrosion behavior of cement mortars. CemConcr Compos 27:125–130. (2005) [CrossRef] [Google Scholar]
  9. Baingo, D. (2012). A Framework for Stochastic Finite Element Analysis of Reinforced Concrete Beams Affected by Reinforcement Corrosion (Doctoral dissertation, Université d'Ottawa/University of Ottawa). [Google Scholar]
  10. Bergman, T. L. Integrating service-life modeling and life-cycle assessment for recycled-aggregate concrete (Doctoral dissertation, University of Colorado at Boulder). (2015). [Google Scholar]
  11. Berradja, A. Electrochemical techniques for corrosion and tribocorrosion monitoring: methods for the assessment of corrosion rates. Corrosion Inhibitors. (2019). [Google Scholar]
  12. Česen A., Kosec T., Legat A Characterization of steel corrosion in mortar by various electrochemical and physical techniques. Corros Sci 75:47–57 (2013) [CrossRef] [Google Scholar]
  13. Chinwko E.C., Odio B.O., Chukwuneke J.L., Sinebe J.E. Investigation of the efect of corrosion on mild steel in five diferent environments. Int J Sci Technol Res 3:306–310 (2014) [Google Scholar]
  14. Daniyal, M., & Akhtar, S. Corrosion assessment and control techniques for reinforced concrete structures: a review. Journal of Building Pathology and Rehabilitation, 5(1), 1–20. (2020). [CrossRef] [Google Scholar]
  15. Daniyal M., Azam A., Akhtar, S. Application of nanomaterials in civil engineering advanced structured materials, vol 84. Springer Nature Singapore Pvt Ltd., Singapore, pp 169–189. (2018) [Google Scholar]
  16. de Alcantara, N. P., Jr. Da Silva, F. M., Guimarães, M. T., & Pereira, M. D. Corrosion assessment of steel bars used in reinforced concrete structures by means of eddy current testing. (2015). [Google Scholar]
  17. Deiveegan, A. Service life prediction of concrete structure using life-365 software. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(2), 1816–1826. (2021). [Google Scholar]
  18. Dufó G., Gaillard N., Mariscotti M., Rufolo, M. Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar. CemConcr Res 74:1–9 (2015) [CrossRef] [Google Scholar]
  19. Anusha, G., & Dineshkumar, R. Study on paver blocks using waste plastics and sugarcane bagasse ash. Materials Today: Proceedings. (2022). [Google Scholar]
  20. Ehlen, M. A., Thomas, M. D., & Bentz, E. C. Life-365 service life prediction modelTM version 2.0. Concrete international, 31(5), 41–46. (2009). [Google Scholar]
  21. Fernandes, C. M., Pina, V. G., Alvarez, L. X., de Albuquerque, A. C. F., dos Santos Júnior, F. M., Barrios, A. M., … & Ponzio, E. A. Use of a theoretical prediction method and quantum chemical calculations for the design, synthesis and experimental evaluation of three green corrosion inhibitors for mild steel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 599, 124857. (2020). [CrossRef] [Google Scholar]
  22. Frankowski P.K. Corrosion detection and measurement using eddy current method. In: International Interdisciplinary PhD Workshop (IIPhDW), IEEE, pp 398–400 (2018) [Google Scholar]
  23. Fuhr P.L., Huston DR Corrosion detection in reinforced concrete roadways and bridges via embedded fber optic sensors. Smart Mater Struct 7:217–228. (1998) [CrossRef] [Google Scholar]
  24. Gao J., Wu J., Li J., Zhao, X. Monitoring of corrosion in reinforced concrete structure using Bragg grating sensing. NDTE Int 44:202–205. (2011) [CrossRef] [Google Scholar]
  25. Grattan S.K.T., Basheer P.A.M., Taylor S.E., Zhao W., Sun T., Grattan K.T.V. Fibre Bragg grating sensors for reinforcement corrosion monitoring in civil engineering structures. J Phys Conf Ser 76 (2007) [Google Scholar]
  26. Grattan S.K.T., Taylor S.E., Basheer P.A.M., Sun T., Grattan K.T.V. Monitoring of corrosion in structural reinforcing bars: performance comparison using in situ fiber-optic and electric wire strain gauge systems. IEEE Sens J 9:1494–1502. (2009) [CrossRef] [Google Scholar]
  27. Gruber K.A., Ramlochan T., Boddy A., Hooton R.D., Thomas MDA Increasing concrete durability with high-reactivity metakaolin. CemConcr Compos 23:479–484. (2001) [CrossRef] [Google Scholar]
  28. Hansson C.M., Mammoliti L., Hope BB Corrosion inhibitors in concrete—part I: the principles. CemConcr Res 28:1775–1781. (1998) [CrossRef] [Google Scholar]
  29. Hansson, C. M. Comments on electrochemical measurements of the rate of corrosion of steel in concrete. Cement and concrete research, 14(4), 574–584. (1984) [CrossRef] [Google Scholar]
  30. Hansson I.L.H., Hansson C.M. Electrical resistivity measurements of Portland cement based materials. CemConcr Res 13:675–683. (1983) [CrossRef] [Google Scholar]
  31. Hope B.B., Ip AKC The research and development branch, Report No. ME-87-09, Ontario Ministry of Transportation (Ontario). (1987) [Google Scholar]
  32. Hughes B.P., Soleit A.K.O., Brierly R.W. New technique for determining the electrical resistivity of concrete. Mag CemConcr Res 37:243–248. (1985) [CrossRef] [Google Scholar]
  33. Jeon, S. H., Kim, S. T., Lee, I. S., Kim, J. S., Kim, K. T., & Park, Y. S. Effects of W substitution on the precipitation of secondary phases and the associated pitting corrosion in hyper duplex stainless steels. Journal of alloys and compounds, 544, 166–172. (2012). [CrossRef] [Google Scholar]
  34. Kannan V., Ganesan, K. Chloride and chemical resistance of self compacting concrete containing rice husk ash and metakaolin. Constr Build Mater 51:225–234. (2014) [CrossRef] [Google Scholar]
  35. Keleştemur O., Demirel, B. Efect of metakaolin on the corrosion resistance of structural lightweight concrete. Constr Build Mater 81:172–178. (2015) [CrossRef] [Google Scholar]
  36. Li, S. K., Hao, J., & Liddell, M. R.. Electrotransport across membranes in biological media: Electrokinetic theories and applications in drug delivery. Transport in biological media, 417–454. (2013) [Google Scholar]
  37. Luo D., Li Y., Li J., Lim K.S., Nazal N.A.M., Ahmad H. A recent progress of steel bar corrosion diagnostic techniques in RC structures. Sensors 19(1):34 (2019) [Google Scholar]
  38. Lv, Y., Niu, D., Liu, X., & Li, Y.C. Corrosion Damage and Life Prediction of Concrete Structure in a 41-Year-Old Steelworks. Materials, 15(17), 5893. (2022). [CrossRef] [PubMed] [Google Scholar]
  39. McCann D.M., Forde MC Review of NDT methods in the assessment of concrete and masonry structures. NDT & E Int 34(2):71–84 (2001) [CrossRef] [Google Scholar]
  40. McMahon, M. E., Santucci, R. J., Jr. Glover, C. F., Kannan, B., Walsh, Z. R., & Scully, J.R. A review of modern assessment methods for metal and metal-oxide based primers for substrate corrosion protection. Frontiers in Materials, 6, 190. (2019). [CrossRef] [Google Scholar]
  41. Meng, D., Lin, S., & Azari, H. Nondestructive corrosion evaluation of reinforced concrete bridge decks with overlays: an experimental study. Journal of Testing and Evaluation, 48(1), 516–537. (2019) [Google Scholar]
  42. Michel A., Pease B.J., Geiker M.R., Stang H., Olesen J.F. Monitoring reinforcement corrosion and corrosion-induced cracking using non-destructive x-ray attenuation measurements. CemConcr Res 41(11):1085–1094 (2011) [CrossRef] [Google Scholar]
  43. Millard S.G., Law D., Bungey J.H., Cairns J Environmental infuences on linear polarisation corrosion rate measurement in reinforced concrete. NDT E Int 34:409–417. (2001) [CrossRef] [Google Scholar]
  44. Nathan C.C. Corrosion inhibitors. Natl Assoc Corros, Eng, p 279. (1973) [Google Scholar]
  45. Nef D., Harnisch J., Beck M., Lostis V., Goebbels J., Meinel, D. Morphology of corrosion products of steel in concrete under macro-cell and self-corrosion conditions. Mater Corros 62(9):861–871 (2011) [CrossRef] [Google Scholar]
  46. Obot, I. B., Umoren, S. A., Gasem, Z. M., Suleiman, R., & El Ali, B. Theoretical prediction and electrochemical evaluation of vinylimidazole and allylimidazole as corrosion inhibitors for mild steel in 1 M HCl. Journal of Industrial and Engineering Chemistry, 21, 1328–1339. (2015). [CrossRef] [Google Scholar]
  47. Opcu I.B., Boga AR Efect of ground granulate blastfurnace slag on corrosion performance of steel embedded in concrete. Mater Des 31:3358–3365. (2010) [CrossRef] [Google Scholar]
  48. Orellan, J. C., Escadeillas, G., & Arliguie, G. Electrochemical chloride extraction: efficiency and side effects. Cement and concrete research, 34(2), 227–234. (2004). [CrossRef] [Google Scholar]
  49. Otieno, M., Beushausen, H., & Alexander, M. Prediction of corrosion rate in RC structures-A critical review. Modelling of corroding concrete structures, 15–37. (2011). [CrossRef] [Google Scholar]
  50. Ouzaa, K., & Oucif, C. Numerical model for prediction of corrosion of steel reinforcements in reinforced concrete structures. Underground Space, 4(1), 72–77. (2019). [CrossRef] [Google Scholar]
  51. Park S., Park S.K. Quantitative corrosion monitoring using wireless electromechanical impedance measurements. Res Non destruct Eval 21:184–192. (2010) [CrossRef] [Google Scholar]
  52. Rathod V.T., Roy Mahapatra D Ultrasonic Lamb wave based monitoring of corrosion type of damage in plate using a circular array of piezoelectric transducers. NDT E Int 44:628–636. (2011) [CrossRef] [Google Scholar]
  53. Siddique R., Klaus, J. Influence of metakaolin on the properties of mortar and concrete: a review. Appl Clay Sci 43:392–400. (2009) [CrossRef] [Google Scholar]
  54. Song H.W., Saraswathy, V. Corrosion monitoring of reinforced concrete structures-a review. Int J Electrochem Sci 2:1–28. (2007) [CrossRef] [Google Scholar]
  55. Tsipas, S., Brossard, J. M., Hierro, M. P., Trilleros, J. A., Sánchez, L., Bolívar, F. J., & Pérez, F. J. Al-Mn CVD-FBR protective coatings for hot corrosion application. Surface and Coatings Technology, 201(8), 4489–4495. (2007). [CrossRef] [Google Scholar]
  56. Vedalakshmi, R., & Thangavel, K. Reliability of electrochemical techniques to predict the corrosion rate of steel in concrete structures. Arabian Journal for science and engineering, 36(5), 769–783. (2011). [CrossRef] [Google Scholar]
  57. Violetta, B. Life-365 service life prediction model. Concrete international, 24 (12), 53–57. (2002). [Google Scholar]
  58. Zheng Z., Sun X., Lei, Y. Monitoring corrosion of reinforcement in concrete structures via fber Bragg grating sensors. Front Mech Eng China 4:316–319(2009) [Google Scholar]
  59. Dineshkumar, R., & Balamurugan, P. Behavior of high-strength concrete with sugarcane bagasse ash as replacement for cement. Innovative Infrastructure Solutions, 6(2), 1–12. (2021). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.