Open Access
Issue |
E3S Web Conf.
Volume 399, 2023
International Conference on Newer Engineering Concepts and Technology (ICONNECT-2023)
|
|
---|---|---|
Article Number | 03013 | |
Number of page(s) | 9 | |
Section | Material Science | |
DOI | https://doi.org/10.1051/e3sconf/202339903013 | |
Published online | 12 July 2023 |
- L. Ding, H. Shengsun, Q. Xiumin and S. Junqi, “Effect of aging treatment on microstructure and properties of VN alloy reinforced Co-based composite coatings by laser cladding,” Mater. Characte., 129, pp. 80–87, (2017). [CrossRef] [Google Scholar]
- H. Zhang, Z. Yong, Z. Zengda and W. Dongting, “Microstructures and properties of low-chromium high corrosion-resistant TiC-VC reinforced Fe-based laser cladding layer,” Journal of Alloys and Compounds, 622, p. 62–68, (2015). [CrossRef] [Google Scholar]
- P. Farahmand and K. Radovan, “Corrosion and wear behavior of laser cladded Ni-WC coatings.” Surf. Coat. Techn., 276, pp. 121–135, (2015). [CrossRef] [Google Scholar]
- M. Prince, A. J. Thanu, and P. Gopalakrishnan, “Improvement in wear and corrosion resistance of AISI 1020 steel by high velocity oxy-fuel spray coating containing Ni-Cr-B-Si-Fe-C,” High Temp. Mater. Proc., 31, pp. 149–155, (2012). [CrossRef] [Google Scholar]
- S. I. Neife, V. S. Aigbodion and C. A. Mgbemene, “High-temperature thermal treatment of co-deposition of Zn-10ZnO-25Ant hill particulate composite coating on mild steel,” Inter. J. Adv. Manufa. Techno., 95, pp. 4371–4381, (2018). [CrossRef] [Google Scholar]
- P. Gopalakrishnan, P. Shankar, R.V. Subba Rao, M. Sundar and S. S. Ramakrishnan, “Laser surface modification of low carbon borided steels,” Scripta Materialia, 44, 5, pp. 707–712, (2001). [CrossRef] [Google Scholar]
- R. Iakovou, L. Bourithis, and G. Papadimitriou. “Synthesis of boride coatings on steel using plasma transferred arc (PTA) process and its wear performance,” Wear, 252, 11–12, pp. 1007–1015, (2002). [CrossRef] [Google Scholar]
- G. R. C. Pradeep, and A. Ramesh, “Comparative study of hardfacing of AISI 1020 steel by three different welding processes,” Global Journals of Research in Engineering 13, A4, pp. 11–16, (2013). [Google Scholar]
- M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, G. A. J. “Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition,” Journal of Applied Physics, 90, 10, pp. 5308–5317, (2001) [CrossRef] [Google Scholar]
- G. R. Heath, P. A. Kammer, and M. M. Stack, “The high temperature erosion/corrosion behavior of industrial thermally sprayed coatings,” In ITSC, pp. 29–37. ASM International, (1996). [Google Scholar]
- A. Zikin, E. Badisch, I. Hussainova, C. Tomastik, and H. Danninger, “Characterisation of TiC-NiMo reinforced Ni-based hardfacing,” Surface and Coatings Technology, 236, pp. 36–44, (2013). [CrossRef] [Google Scholar]
- A. K. Das, “Effect of rare earth oxide additive in coating deposited by laser cladding: A review,” Materials Today: Proceedings, 52, pp. 1558–1564, (2022). [CrossRef] [Google Scholar]
- R. A. R. Rashid, S. Abaspour, S. Palanisamy, N. Matthews, and M. S. Dargusch, “Metallurgical and geometricalcharacterisation of the 316L stainless steel clad deposited on a mild steel substrate,” Surf. Coat. Techno., 327, pp. 174–184, (2017). [CrossRef] [Google Scholar]
- V. Fallah, S.F. Corbin and A. Khajepour, “Solidification behaviour and phase formation during pre-placed laser cladding of Ti45Nb on mild steel.” Surf. Coat. Techno., 204, 15, pp. 2400–2409, (2010). [CrossRef] [Google Scholar]
- A. K. Das, “Recent trends in laser cladding and alloying on magnesium alloys: A review,” Materials Today: Proceedings, 51, pp. 723–727, (2022). [CrossRef] [Google Scholar]
- G. Han, and Y. Zhang, “Microstructure and Corrosion of Laser Cladding Coatings on Titanium Alloy with Nd2O3,” J. Engin. Materi. Techno., 143, 1, (2021). [Google Scholar]
- M. B. Rodrigues, R. G. N. Silva, M. Pereira, R. H. G. E. Silva, and E. W. Teichmann, “Effect of dynamic wire feeding on deposition quality in laser cladding process.” Journal of Laser Applications, 32, 2, p. 022065, (2020). [CrossRef] [Google Scholar]
- O. S. Fatoba, E. T. Akinlabi, S. A. Akinlabi, and S. Krishna, “Influence of rapid solidification and optimized laser parameters relationship on the geometrical and hardness properties of Ti-Al-Cu coatings,” Materials Today: Proceedings 18, pp. 2859–2867, (2019). [CrossRef] [Google Scholar]
- L. Han, K. M. Phatak, and F. W. Liou, “Modeling of laser cladding with powder injection,” Metallurgical and Materials transactions B, 35, pp. 1139–1150, (2004). [CrossRef] [Google Scholar]
- T. Wu, W. Shi, L. Xie, M. Gong, J. Huang, Y. Xie, and K. He, “Effect of preheating temperature on geometry and mechanical properties of laser cladding-based stellite 6/WC coating.” Materials, 15, 11, p.3952, (2022). [CrossRef] [PubMed] [Google Scholar]
- X. Xu, G. Mi, L. Chen, L. Xiong, P. Jiang, X. Shao and C. Wang, “Research on microstructures and properties of Inconel 625 coatings obtained by laser cladding with wire,” Jour. Alloys Compou., 715, pp.362–373, (2017). [CrossRef] [Google Scholar]
- L. H. R. Apolinário, E. A. Torres, H. R. Araújo, A. D. A. Vicente, and T. F. D. A. Santos, “Effect of laser cladding parameters in NbC reinforced 316L austenitic stainless steel composite depositions on a mild steel,” The International Journal of Advanced Manufacturing Technology, 122, 7-8, pp. 3095–3113, (2022). [CrossRef] [Google Scholar]
- A. Woldan, J. Kusiński, and E. Tasak, “The microstructure of plain carbon steel laser-alloyed with silicon carbide.” Materials chemistry and physics, 81, 2-3, pp. 507–509, (2003). [CrossRef] [Google Scholar]
- J. D. Majumdar, B. Ramesh Chandra, A. K. Nath, and I. Manna, “Studies on compositionally graded silicon carbide dispersed composite surface on mild steel developed by laser surface cladding,” Journal of Materials Processing Technology, 203, 1-3, pp. 505–512, (2008). [CrossRef] [Google Scholar]
- G. Abbas, and U. Ghazanfar, “Two-body abrasive wear studies of laser produced stainless steel and stainless steel+ SiC composite clads,” Wear, 258, 1-4, pp. 258–264, (2005). [CrossRef] [Google Scholar]
- T. Han, M. Xiao, Y. Zhang, and Y. Shen, “Effects of graphite and graphene spatial structure on the TiC crystal structure and the properties of composite coatings.” Surf. Coat. Technol. 377, pp. 124909, (2019). [CrossRef] [Google Scholar]
- E. Labban, F. Hashem Essam Rabea Ibrahim Mahmoud, and Ali Algahtani, “Microstructure, wear, and corrosion characteristics of TiC-laser surface cladding on low-carbon steel,” Metallur. Mater. Transac. B, 47, pp. 974–982, (2016). [CrossRef] [Google Scholar]
- A. Emamian, “In-situ TiC-Fe deposition on mild steel using a laser cladding process,” (2011). [Google Scholar]
- H. Chen, Y. Lu, Yunsen Sun, Y. Wei, X. Wang and D. Liu, “Coarse TiC particles reinforced H13 steel matrix composites produced by laser cladding,” Surface and Coatings Technology, 395 pp. 125867, (2020). [CrossRef] [Google Scholar]
- R. Anandkumar, A. Almeida, R. Colaço, R. Vilar, V. Ocelik and J. Th M. De Hosson, “Microstructure and wear studies of laser clad Al-Si/SiC (p) composite coatings.” Surfa. Coati. Techno., 201, 24, pp. 9497–9505, (2007). [CrossRef] [Google Scholar]
- B. Du, Z. Zou, X. Wang and S. Qu, “Laser cladding of in situ TiB2/Fe composite coating on steel,” Applied Surf. Scien., 254, 20, pp. 6489–6494, (2008). [CrossRef] [Google Scholar]
- B. Du, Z. Zou, X. Wang and S. Qu, “In situ synthesis of TiB2/Fe composite coating by laser cladding,” Materials Letters, 62, 4-5, pp. 689–691, (2008). [CrossRef] [Google Scholar]
- B. Tang, Y. Tan, Z. Zhang, T. Xu, Z. Sun and X. Li, “Effects of process parameters on geometrical characteristics, microstructure and tribological properties of TiB2 reinforced inconel 718 alloy composite coatings by laser cladding,” Coatings, 10, 1, p. 76, (2020). [CrossRef] [Google Scholar]
- M. Masanta, S. M. Shariff, and A. Roy Choudhury, “A comparative study of the tribological performances of laser clad TiB2-TiC-Al2O3 composite coatings on AISI 1020 and AISI 304 substrates,” Wear, 271, 7-8, pp. 1124–1133, (2011). [CrossRef] [Google Scholar]
- Z. Li, M. Wei, K. Xiao, Z. Bai, W. Xue, C. Dong, D. Wei and X. Li, “Microhardness and wear resistance of Al2O3-TiB2-TiC ceramic coatings on carbon steel fabricated by laser cladding,” Cerami. Internati., 45, 1, 115–121, (2019). [CrossRef] [Google Scholar]
- M. Masanta, S. M. Shariff and A. Roy Choudhury, “Tribological behavior of TiB2-TiC-A12O3 composite coating synthesized by combined SHS and laser technology.” Surf. Coati. Techno., 204, 16-17, pp. 2527–2538, (2010). [CrossRef] [Google Scholar]
- C. Zhenda, L. Leong Chew and Q. Ming. “Laser cladding of WCD Ni composite.” J. mater. Proce. Techno. 62, 4, 321–323 (1996). [CrossRef] [Google Scholar]
- S. Zhou, X. Zeng, Q. Hu, and Y. Huang, “Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization,” Applied Surface Science, 255, 5, pp. 1646–1653, (2008). [CrossRef] [Google Scholar]
- M. Li, Q. Zhang, B. Han, L. Song, G. Cui, J. Yang and J. Li, “Microstructure and property of Ni/WC/La2O3 coatings by ultrasonic vibration-assisted laser cladding treatment.” Opti. Lasers in Enginee., 125, p. 105848, (2020). [CrossRef] [Google Scholar]
- K. V. Acker, D. Vanhoyweghen, R. Persoons, and J. Vangrunderbeek, “Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings,” Wear, 258, 1-4, 194–202, (2005). [CrossRef] [Google Scholar]
- J. Kumaraswamy, Anil, K. C. Vidyasagar Shetty & C. Shashishekar, Wear behaviour of the Ni-Cu alloy hybrid composites processed by sand mould casting, Advances in Materials and Processing Technologies, page 1–17, (2022) [Google Scholar]
- Subbian, V., S. Siva Kumar, K. Chaithanya, Sujin Jose Arul, Gopal Kaliyaperumal, and Khan M. Adam. “Optimization of solar tunnel dryer for mango slice using response surface methodology.” Materials Today: Proceedings 46 (2021). [Google Scholar]
- K.C. Anil, J. Kumaraswamy, Akash et al., Experimental arrangement for estimation of metal-mold boundary heat flux during gravity chill casting, Materials Today: Proceedings, (2022) [Google Scholar]
- Anil, K.C., Kumarswamy, J., Reddy, M., Prakash, B., Mechanical Behaviour and Fractured Surface Analysis of Bauxite Residue & Graphite Reinforced Aluminium Hybrid Composites, Frattura ed Integrità Strutturale, 62 (2022) [Google Scholar]
- Satish, S., S. John Alexis, Arun Bhuvendran, Mohanraj Shanmugam, S. Baskar, and V. S. Shaisundaram. “Design and analysis of mild steel mini truck body for increasing the payload capacity.” Materials Today: Proceedings 37 (2021). [Google Scholar]
- J. Kumaraswamy, V. Kumar and G. Purushotham, A review on mechanical and wear properties of ASTM a 494 M gradenickel-based alloy metal matrix composites, Materials Today: Proceedings, 37, pp 2027–2032, (2021). [CrossRef] [Google Scholar]
- Venkatesh, R., Roshita David, C. B. Priya, M. Aruna, Gopal Kaliyaperumal, N. Mukilarasan, Avinash Malladi, and M. Karthikeyan. “Synthesis and Experimental Thermal Adsorption Characteristics of Epoxy Hybrid Composite for Energy Storage Applications.” Adsorption Science & Technology (2023). [Google Scholar]
- K. Jayappa, V. Kumar, and G. G. Purushotham, “Effect of reinforcements on mechanical properties of nickel alloy hybrid metal matrix composites processed by sand mold technique,” Applied Science and Engineering Progress, 14, 1, pp. 44–51, (2021) [Google Scholar]
- Prabhakaran, A., K. Sridhivya Krishnan, R. Dhinakaran, S. Baskar, and V. S. Shaisundaram. “Analysis of the efficiency of an automotive alternator by replacing mild steel into aluminum as a material for rotor.” Materials Today: Proceedings 37 (2021). [Google Scholar]
- Srikanth, S., Parthiban, A., Vijayan, V., Dinesh, S., Sathish, S. Experimental Investigation of Nd:YAG Laser Welding of Inconel 625 Alloy Sheet. Advances in Industrial Automation and Smart Manufacturing. Lecture Notes in Mechanical Engineering. 21 October 2020 Singapore (2021). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.