Open Access
Issue |
E3S Web Conf.
Volume 399, 2023
International Conference on Newer Engineering Concepts and Technology (ICONNECT-2023)
|
|
---|---|---|
Article Number | 03020 | |
Number of page(s) | 10 | |
Section | Material Science | |
DOI | https://doi.org/10.1051/e3sconf/202339903020 | |
Published online | 12 July 2023 |
- S. H. Sa'diyah, “Peramalan Harga Besi Beton Menggunakan Fungsi Transfer, Autoregressive Distributed Lag (Ardl), Dan Support Vector Regression (Svr),” Institut Teknologi Sepuluh November, 2018. [Google Scholar]
- A. M. Husein, F. R. Lubis, and M. K. Harahap, “Analisis Prediktif untuk Keputusan Bisnis: Peramalan Penjualan,” Data Sciences Indonesia (DSI), vol. 1, no. 1, pp. 32–40, 2021. [CrossRef] [Google Scholar]
- J. Frois Caldeira, R. Gupta, M. T. Suleman, and H. S. Torrent, “Forecasting the term structure of interest rates of the BRICS: Evidence from a nonparametric functional data analysis,” Emerging Markets Finance and Trade, pp. 1–18, 2020. [Google Scholar]
- S. Siami-Namini, N. Tavakoli, and A. S. Namin, “A comparison of ARIMA and LSTM in forecasting time series,” in 2018 17th IEEE international conference on machine learning and applications (ICMLA), 2018: IEEE, pp. 1394–1401. [CrossRef] [Google Scholar]
- R. Patria and S. Sudarto, “Integrasi forecasting pada rantai pasok manufaktur komponen otomotif Jepang di Indonesia dengan penerapan metode classic dan regresi,” Operations Excellence, vol. 12, no. 3, pp. 386–397, 2020. [CrossRef] [Google Scholar]
- P. Sun, I. Kim, and K. Lee, “Flexible weighted dirichlet process mixture modelling and evaluation to address the problem of forecasting return distribution,” Journal of Nonparametric Statistics, vol. 32, no. 4, pp. 989–1014, 2020. [CrossRef] [Google Scholar]
- A. Tompkins and F. Ramos, “Fourier feature approximations for periodic kernels in time-series modelling,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2018, vol. 32, no. 1. [CrossRef] [Google Scholar]
- P. J. Pritz, D. Perez, and K. K. Leung, “Fast-fourier-forecasting resource utilization in distributed systems,” in 2020 29th International Conference on Computer Communications and Networks (ICCCN), 2020: IEEE, pp. 1–9. [Google Scholar]
- P. Sun, N. AlJeri, and A. Boukerche, “A fast vehicular traffic flow prediction scheme based on fourier and wavelet analysis,” in 2018 IEEE Global Communications Conference (GLOBECOM), 2018: IEEE, pp. 1–6. [Google Scholar]
- E. Yukseltan, A. Yucekaya, and A. H. Bilge, “Hourly electricity demand forecasting using Fourier analysis with feedback,” Energy Strategy Reviews, vol. 31, p. 100524, 2020. [CrossRef] [Google Scholar]
- M. Mardianto, S. H. Kartiko, and H. Utami, “Forecasting Trend-Seasonal Data Using Nonparametric Regression with Kernel and Fourier Series Approach,” in Proceedings of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017), 2019: Springer, pp. 343–349. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.