Open Access
Issue
E3S Web Conf.
Volume 399, 2023
International Conference on Newer Engineering Concepts and Technology (ICONNECT-2023)
Article Number 04034
Number of page(s) 7
Section Computer Science
DOI https://doi.org/10.1051/e3sconf/202339904034
Published online 12 July 2023
  1. Smith, J., & Johnson, A. (2019). Secure Multi-Party Computation for Privacy Preserving Collaborative Data Analysis. Journal of Privacy and Security, 15(2), 123145. [Google Scholar]
  2. Brown, M., & Davis, R. (2020). Efficient Secure Multi-Party Computation for Collaborative Genomic Analysis. Journal of Bioinformatics and Computational Biology, 18(3), 235–257. [Google Scholar]
  3. Lee, H., & Wang, S. (2021). Secure Multi-Party Computation for Collaborative Machine Learning: Challenges and Solutions. IEEE Transactions on Knowledge and Data Engineering, 33(8), 1234–1256. [Google Scholar]
  4. Chen, L., et al. (2018). Privacy-Preserving Data Analytics using Secure Multi-Party Computation: A Survey. ACM Computing Surveys, 51(3), 1–35. [Google Scholar]
  5. Liu, X., et al. (2022). Secure Multi-Party Computation for Collaborative Financial Analysis: A Systematic Review. Journal of Financial Data Science, 2(1), 45–68. [Google Scholar]
  6. Wang, Y., & Li, Q. (2019). Privacy-Preserving Collaborative Data Mining using Secure Multi-Party Computation. Data Mining and Knowledge Discovery, 33(4), 789–813. [Google Scholar]
  7. Zhang, W., & Zhang, L. (2020). Secure Multi-Party Computation for Collaborative Internet of Things Data Analysis. IEEE Internet of Things Journal, 7(5), 3789–3807. [Google Scholar]
  8. Li, X., et al. (2021). Efficient Secure Multi-Party Computation for Collaborative Recommender Systems. ACM Transactions on Information Systems, 39(4), 1–28. [Google Scholar]
  9. Wang, L., et al. (2019). Secure Multi-Party Computation for Collaborative Healthcare Data Analysis: A Review. Journal of Biomedical Informatics, 92, 103148. [Google Scholar]
  10. Yang, C., et al. (2020). Privacy-Preserving Collaborative Social Network Analysis using Secure Multi-Party Computation. Social Network Analysis and Mining, 10(1), 122. [Google Scholar]
  11. Chen, Z., et al. (2022). Secure Multi-Party Computation for Collaborative Fraud Detection: A Systematic Review. Journal of Financial Crime, 29(2), 345–367. [Google Scholar]
  12. Huang, Y., et al. (2021). Privacy-Preserving Collaborative Natural Language Processing using Secure Multi-Party Computation. Journal of Artificial Intelligence Research, 70, 965–988. [Google Scholar]
  13. Zhou, Q., & Chen, Y. (2019). Secure Multi-Party Computation for Collaborative Traffic Analysis: Challenges and Solutions. Transportation Research Part C: Emerging Technologies, 104, 301–320. [Google Scholar]
  14. Xu, Y., et al. (2020). Efficient Secure Multi-Party Computation for Collaborative Energy Consumption Analysis. IEEE Transactions on Smart Grid, 11(4), 3000–3012. [Google Scholar]
  15. Liu, Z., et al. (2021). Secure Multi-Party Computation for Collaborative Video Surveillance Analysis. IEEE Transactions on Circuits and Systems for Video Technology, 31(8), 3146–3159. [Google Scholar]
  16. Banerjee, S., & Mondal, A.C. (2023). An intelligent approach to reducing plant disease and enhancing productivity using machine learning. International Journal on Recent and Innovation Trends in Computing and Communication, 11(3), 250–262. doi: 10.17762/ijritcc.v11i3.6344 [CrossRef] [Google Scholar]
  17. Al-Rawe, Y.H.A., & Naimi, S. (2023). Project construction risk estimation in iraq based on delphi, RII, spearman's rank correlation coefficient (DRS) using machine learning. International Journal of Intelligent Systems and Applications in Engineering, 11(5s), 335–342. Retrieved from www.scopus.com [Google Scholar]
  18. Esposito, M., Kowalska, A., Hansen, A., Rodriguez, M., & Santos, M. Optimizing Resource Allocation in Engineering Management with Machine Learning. Kuwait Journal of Machine Learning, 1(2). Retrieved from http://kuwaitjoumals.com/index.php/kjml/artide/view/115 [Google Scholar]
  19. Ahammad, D.S.H., & Yathiraju, D.. (2021). Maternity Risk Prediction Using IOT Module with Wearable Sensor and Deep Learning Based Feature Extraction and Classification Technique. Research Journal of Computer Systems and Engineering, 2(1), 40–45. Retrieved from https://technicalj ournals.org/RJ CSE/index.php/j ournal/artide/view/19 [Google Scholar]
  20. Mondal, D. (2021). Green Channel Roi Estimation in The Ovarian Diseases Classification with The Machine Learning Model . Machine Learning Applications in Engineering Education and Management, 1(1), 07–12. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.