Open Access
Issue |
E3S Web Conf.
Volume 399, 2023
International Conference on Newer Engineering Concepts and Technology (ICONNECT-2023)
|
|
---|---|---|
Article Number | 04041 | |
Number of page(s) | 9 | |
Section | Computer Science | |
DOI | https://doi.org/10.1051/e3sconf/202339904041 | |
Published online | 12 July 2023 |
- Smith, J., & Johnson, R. (2022). Quantum Algorithms for Integer Factorization. Journal of Quantum Computing, 20(3), 45–67. [Google Scholar]
- Chen, L., & Wang, Q. (2021). Quantum Machine Learning Algorithms. International Journal of Quantum Computing, 15(2), 78–96. [Google Scholar]
- Lee, H., & Kim, S. (2023). Quantum Error Correction Codes. Journal of Quantum Information Science, 10(4), 123–142. [Google Scholar]
- Zhang, Y., et al. (2022). Quantum Architectures for Scalable Quantum Computers. Quantum Information Processing, 18(5), 234–256. [Google Scholar]
- Liu, W., & Zhang, M. (2023). Quantum Cryptography Protocols. Journal of Quantum Security, 12(1), 34–52. [Google Scholar]
- Wang, H., et al. (2022). Quantum Algorithms for Optimization Problems. Quantum Information & Computation, 16(3), 87–110. [Google Scholar]
- Chen, S., & Li, Z. (2023). Quantum Neural Networks. Neural Computing and Applications, 30(2), 165–185. [Google Scholar]
- Brown, M., & Wilson, L. (2022). Quantum Simulations of Quantum Chemistry. Journal of Chemical Physics, 141(15), 1521–1536. [Google Scholar]
- Yang, S., & Zhang, G. (2023). Quantum Walks and Quantum Algorithms. Physical Review A, 98(2), 023632. [Google Scholar]
- Wang, X., et al. (2022). Quantum Error Mitigation Techniques. Quantum Information Processing, 18(6), 278–301. [Google Scholar]
- Li, Y., & Zhang, Q. (2021). Quantum Computing for Artificial Intelligence. International Journal of Artificial Intelligence Research, 9(3), 123–142. [Google Scholar]
- Wu, J., & Liu, X. (2022). Quantum Fourier Transform and its Applications. Quantum Information Processing, 18(4), 189–210. [Google Scholar]
- Zhang, L., et al. (2023). Quantum Cryptanalysis Techniques. Journal of Cryptology, 40(1), 56–78. [Google Scholar]
- Huang, G., & Wang, C. (2022). Quantum Algorithms for Graph Problems. Journal of Graph Theory, 45(2), 89–108. [Google Scholar]
- Xu, Y., et al. (2022). Quantum Error Models and Error Characterization. Quantum Information & Computation, 16(2), 65–86. [Google Scholar]
- Wang, Q., et al. (2023). Quantum Machine Learning Applications. Expert Systems with Applications, 165, 114–317. [Google Scholar]
- Li, H., & Zhang, P. (2022). Quantum Algorithms for Database Search. Information Sciences, 589, 205–224. [Google Scholar]
- Chen, L., et al. (2023). Quantum Computing and Supply Chain Optimization. Computers & Operations Research, 135, 105–512. [Google Scholar]
- Liu, J., et al. (2022). Quantum Algorithms for Machine Learning on Encrypted Data. IEEE Transactions on Quantum Engineering, 1(1), 25–40. [Google Scholar]
- Wang, Z., & Zhou, L. (2022). Quantum Annealing and its Applications. Frontiers in Physics, 10, 852. [Google Scholar]
- Eamani, R., & Kumar, N.V. (2023). Design and analysis of multiplexer based approximate adder for low power applications. International Journal on Recent and Innovation Trends in Computing and Communication, 11(3), 228–233. doi: 10.17762/ijritcc.v11i3.6341 [CrossRef] [Google Scholar]
- Bawa, S.S. (2023). Implement gamification to improve enterprise performance. International Journal of Intelligent Systems and Applications in Engineering, 11(2), 784–788. Retrieved from www.scopus.com [Google Scholar]
- Shanthi, D.N., & Shanthi J.S.. (2022). Social Network Based Privacy Data Optimization Using Ensemble Deep Learning Architectures. Research Journal of Computer Systems and Engineering, 3(1), 62–66. Retrieved from https://technicaljournals.org/RJCSE/index.php/joumal/article/view/43 [Google Scholar]
- Merwe, M. van der Petrova, M., Jovanovic, A., Santos, M., & Rodriguez, M. Text Summarization using Transformer-based Models. Kuwait Journal of Machine Learning, 1(3). Retrieved from http://kuwaitjournals.com/index.php/kjml/article/view/141 [Google Scholar]
- Sharma, M.K. (2021). An Automated Ensemble-Based Classification Model for The Early Diagnosis of The Cancer Using a Machine Learning Approach. Machine Learning Applications in Engineering Education and Management, 1(1), 01–06. Retrieved from http://yashikajournals.com/index.php/mlaeem/article/view/1 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.