Open Access
Issue
E3S Web Conf.
Volume 399, 2023
International Conference on Newer Engineering Concepts and Technology (ICONNECT-2023)
Article Number 04056
Number of page(s) 11
Section Computer Science
DOI https://doi.org/10.1051/e3sconf/202339904056
Published online 12 July 2023
  1. A. AlSabeh, H. Safa, E. Bou-Harb, and J. Crichigno, “Exploiting ransomware paranoia for execution prevention,” in Proc. IEEE Int. Conf. Commun. (ICC), 2020, pp. 1–6. [Google Scholar]
  2. B. Zhang, W. Xiao, X. Xiao, A.K. Sangaiah, W. Zhang, and J. Zhang, “Ransomware classification using patch-basedCNN and self-attention network on embedded N-grams of opcodes,” Future Gener. Comput. Syst., vol. 110, pp. 708–720, Sep. 2020. [CrossRef] [Google Scholar]
  3. G. Suarez-Tangil et al., “DroidSieve: Fast and accurate classification of obfuscated Android malware,” in Proc. 7th ACM Conf. Data Appl. Security Privacy, 2017, pp. 309–320. [Google Scholar]
  4. H. Cai, N. Meng, B. Ryder, and D. Yao, “DroidCat: Effective Android malware detection and categorization via app-level profiling,” IEEE Trans. Inf. Forensics Security, vol.14, no. 6, pp. 1455–1470, Jun. 2019. [CrossRef] [Google Scholar]
  5. H. Daku, P. Zavarsky, and Y. Malik, “Behavioral-based classification and identification of ransomware variants using machine learning,” in Proc. 17th IEEE Int. Conf. Trust Security Privacy Comput. Commun. 12th IEEE Int. Conf. Big Data Sci. Eng. (TrustCom/BigDataSE), 2018, pp. 1560–1564. [Google Scholar]
  6. H. Zhang, X. Xiao, F. Mercaldo, S. Ni, F. Martinelli, and A.K. Sangaiah, “Classification of ransomware families with machine learning based on Ngram of opcodes,” Future Gener. Comput. Syst., vol. 90, pp. 211–221, Jan. 2019. [CrossRef] [Google Scholar]
  7. K.P. Subedi, D.R. Budhathoki, and D. Dasgupta, “Forensic analysis of ransomware families using static and dynamic analysis,” in Proc. IEEE Security Privacy Workshops (SPW), 2018, pp. 180–185. [Google Scholar]
  8. L. Onwuzurike et al., “MaMaDroid: Detecting Android malware by building Markov Chains of behavioral models (extended version),” ACM Trans. Privacy 71 Security, vol. 22, no. 2, pp. 1–34, 2019. [CrossRef] [Google Scholar]
  9. J. Yan, G. Yan, and D. Jin, “Classifying malware represented as control flow graphs using deep graph convolutional neural network,” in Proc. 49th Annu. IEEE/IFIP Int. Conf. Depend. Syst. Netw. (DSN), 2019, pp. 52–63. [Google Scholar]
  10. R. Vinayakumar, K.P. Soman, K.K.S. Velan, and S. Ganorkar, “Evaluating shallow and deep networks for ransomware detection and classification,” in Proc. IEEE Int. Conf. Adv. Comput. Commun. Informat. (ICACCI), 2017, pp. 259–265. [Google Scholar]
  11. Maheswari B.U., Shanthakumari A., Sirija M., Jayashankari J., Kalpana R., (2022), "Detecting identity based spoofing attacks in wireless network using IDs", AIP Conference Proceedings, Vol.2393. doi: 10.1063/5.0074431 [Google Scholar]
  12. Sowmya S., Kannan K.N., Anbu S., Veeralakshmi P., Kapilavani R.K., (2022), "Preventing collaborative attacks against on demand routing using recommendation based trust framework in MANET", AIP Conference Proceedings, Vol. 2393. doi: 10.1063/5.0079725 [Google Scholar]
  13. Natraj N.A., Kamatchi Sundari V., Ananthi K., Rathika S., Indira G., Rathish C.R., (2022), "Security Enhancement of Fog Nodes in IoT Networks Using the IBF Scheme", Lecture Notes in Networks and Systems, Vol. 514 LNNS, no., pp. 119–129. doi: 10.1007/978-3-031-12413-6_10 [CrossRef] [Google Scholar]
  14. Babu G.N.K.S., Anbu S., Kapilavani R.K., Balakumar P., Senthilkumar S.R., (2022), "Development of cyber security and privacy by precision decentralized actionable threat and risk management for mobile communication using Internet of Things (IOT)", AIP Conference Proceedings, Vol. 2393. doi: 10.1063/5.0074634 [Google Scholar]
  15. Sirija M., Jayashankari, Kalpana, Umamaheswari, B., Shanthakumari, A., (2022), "Characteristic based spam detection system to reveal the mock appraise in online social media", AIP Conference Proceedings, Vol.2393. doi: 10.1063/5.0074501 [Google Scholar]
  16. Hemalatha B., Karthik B., Balaji S., Senthilkumar K.K., Ghosh A., (2022), "CNN Based Image Forgery Segmentation and Classification for Forensic Verification", Lecture Notes in Electrical Engineering, Vol. 894 LNEE, no., pp. 652–661. doi: 10.1007/978-981-19-1677-9_57 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.