Open Access
Issue
E3S Web of Conf.
Volume 401, 2023
V International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2023)
Article Number 01024
Number of page(s) 12
Section Hydraulics of Structures, Hydraulic Engineering and Land Reclamation Construction
DOI https://doi.org/10.1051/e3sconf/202340101024
Published online 11 July 2023
  1. Zhang, B., Wan, W., & Shi, M. Experimental and numerical simulation of water hammer in gravitational pipe flow with continuous air entrainment. Water, 10(7), 928. (2018). [CrossRef] [Google Scholar]
  2. Rakhmatulin Kh.A., Mirkhamidova Kh.B. Water hammer in pipes of circular cross section during the movement of multiphase media. - Izv. Academy of Sciences of the Uzbek SSR, ser. tech. Sciences: Mechanics, No. 5, pp. 27-30. (1970). [Google Scholar]
  3. Jonkobilov, U., Rajabov, U., & Jonkobilov, S. Hydraulic shock damper with and without diaphragm. Paper presented at the IOP Conference Series: Earth and Environmental Science, 1112(1) (2022). [Google Scholar]
  4. Jonkobilov, U., Rajabov, U., & Jonkobilov, S. Experimental study of the polytropic coefficient for hydraulic shock from a decrease in pressure. Paper presented at the IOP Conference Series: Earth and Environmental Science, 1112(1) (2022). [Google Scholar]
  5. Evangelisti G. Waterkammer analysis by the Method of characteristics. – L’Energia, Elektrica/Milano, Vol. 86(42), pp.839-858. (1969). [Google Scholar]
  6. Dikarevsky V.S. Conduits. Monograph. Proceedings of RAASN. Construction sciences. Vol. 3 - M.: RAASN, (1997). [Google Scholar]
  7. Dikarevsky V.S., Kapinos O.G. Water supply and sanitation. (2005). [Google Scholar]
  8. Charny I.A. Unsteady motion of a real fluid in pipes. (1975). [Google Scholar]
  9. Fox D.A. Hydraulic analysis of unsteady motion in pipelines (translated from English). Moscow, (1981). [Google Scholar]
  10. Lyamaev B.F., Nebolsin G.P., Nelyubov V.A. Stationary and transient processes in complex hydraulic systems. Computer calculation methods. (1978). [Google Scholar]
  11. J.I.Adachi, E. Detournay, A.P. Peirce, Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers, Int. J. Rock Mech. Min. Sci. 47, 625–639. (2010) [CrossRef] [Google Scholar]
  12. Ghidawi MS, Zhao M, Mclnnis DA, Axworthy DH. A review of water hammer theory and practice. Department of Civil Engineering, The Hong Kong University of Science and Technology, Hong Kong, China. Appl. Mech. Rev. 58:49e76. (2005). [Google Scholar]
  13. Sadafi M, Riasi A, Nourbakhsh SA. Cavitating flow during water hammer using a generalized interface vaporous cavitation model. J Fluids Struct. 34:190–201. (2012 ). [CrossRef] [Google Scholar]
  14. M. Lewandowski, A. Adamkowski, Investigation of hydraulic transients in a pipeline with column separation, J. Hydraul. Eng. ASCE 138 (11) 935–944. (2012). [CrossRef] [Google Scholar]
  15. H.A. Kaveh, B.O.N. Faig, K.H. Akbar, Some aspects of physical and numerical modeling of water-hammer in pipelines, Nonlinear Dynam. 60, 677–701. (2010). [CrossRef] [Google Scholar]
  16. W. Wan, W. Huang, C. Li, Sensitivity analysis for the resistance on the performance of a pressure vessel for water hammer protection, J. Pressure Vessel Technol. Trans. ASME 136 (1) 011303. (2014). [CrossRef] [Google Scholar]
  17. Makisha E.V., Nosorev E.V. Causes and features of the occurrence of hydraulic shock in pressure pipelines of sewage pumping stations. Don Engineering Bulletin, No. 3 (2021). [Google Scholar]
  18. Prigozhaev S.S., Pykhalov A.A., Burmakin N.O. Analysis of the influence of the characteristics of a hydraulic vibration damper on the stress-strain state of a passenger car bogie. Modern technologies. System analysis. Modeling. No. 2 (74). pp. 130–141. (2022). [CrossRef] [Google Scholar]
  19. Golovin A.N. Fluid vibration damper with a transversely developed structure. Aviation and rocket and space technology. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences, Vol. 20(4), pp. 76-80. (2018). [Google Scholar]
  20. Ismagilova D.F., Ismagilova R.F., Tselishchev V.A. Mathematical modeling of the hydraulic shock protection system. Bulletin of USATU. Vol. 18 (4(26)). pp. 72–78. (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.