Open Access
Issue |
E3S Web of Conf.
Volume 401, 2023
V International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2023)
|
|
---|---|---|
Article Number | 01029 | |
Number of page(s) | 8 | |
Section | Hydraulics of Structures, Hydraulic Engineering and Land Reclamation Construction | |
DOI | https://doi.org/10.1051/e3sconf/202340101029 | |
Published online | 11 July 2023 |
- Artemyeva T. V., and Zuikov A. L. Hydraulic modeling of surface vortex funnels. In IOP Conference Series: Materials Science and Engineering, 1159(1), (2021). [Google Scholar]
- K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, (2002). [CrossRef] [Google Scholar]
- Gharangik A. M., and Chaudhry M. H. Numerical simulation of hydraulic jump. Journal of hydraulic engineering, 117(9), pp.1195-1211 (1991) [CrossRef] [Google Scholar]
- Hamid, N.N., Majid, A.A., Ismail A.I. “Quartic B-spline interpolation method for linear two-point boundary value problem”. World Applied Sciences Journal, pp. 39–43 (2021). [Google Scholar]
- Fauzi N.I., Sulaiman J. Half-sweep modified successive over relaxtion method for solving second order two-point boundary value problems using cubic spline. International Journal of Contemporary Mathematical Sciences, pp. 57–59 (2012). [Google Scholar]
- Chawla M.M., Subramanian R. A new fourth-order cubic spline method for second-order nonlinear two-point boundary-value problems. Journal of Computational and Applied Mathematics, pp. 1–10 (2005). [Google Scholar]
- John P. Wilson Digital terrain modeling Spatial Sciences Institute, University of Southern California, Los Angeles, Geomorphology 137 (2012). [Google Scholar]
- Chan, T.M.: More logarithmic-factor speedups for 3SUM, (median, +)-convolution, and some geometric 3SUM-hard problems. ACM Trans. Algorithms 16(1), 7:1–7:23 (2020). [Google Scholar]
- Artemyeva T. V., and Zuikov A. L. Hydraulic modeling of surface vortex funnels. In IOP Conference Series: Materials Science and Engineering, 1159(1), (2021). [Google Scholar]
- Suetina T. A., Chernykh O. N., and Burlachenko A. V. Decrease in ecological damage of water throughput tubular transitions on spawning. In IOP Conference Series: Materials Science and Engineering, 1159(1) (2021). [Google Scholar]
- Maynard, J.J., Johnson, M.G.: Scale-dependency of LiDAR derived terrain attributes in quantitative soil-landscape modeling: Effects of grid resolution vs. neighborhood extent. Geoderma 230-231, 29–40 (2014). [CrossRef] [Google Scholar]
- C. A. C. Coello, D. A. VanVeldhuizen, and G. Lamont. Evolutionary Algorithms for Solving Multi-Objective Problems. Boston, MA: Kluwer Academic Publishers, (2002). [CrossRef] [Google Scholar]
- Hurtado, F., Löffler, M., Matos, I., Sacristán, V., Saumell, M., Silveira, R.I., Staals, F.: Terrain visibility with multiple viewpoints. International Journal of Computational Geometry & Applications 24(04), 275–306 (2014). [CrossRef] [Google Scholar]
- K. Deb, M. Mohan, and S. Mishra. Towards a quick computation of well-spread pareto-optimal solutions. In Proceedings of the Second Evolutionary Multi-Criterion Optimization (EMO-03) Conference (LNCS 2632), pages 222–236, (2003). [Google Scholar]
- K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable test problems for evolutionary multiobjective optimization. In A. Abraham, L. Jain, and R. Goldberg, editors, Evolutionary Multiobjective Optimization, pages 105–145. London: Springer-Verlag, (2000). [Google Scholar]
- G. Fadel and Y. Li. Approximating the Pareto curve to help solve bi-objective design problems. Structural and Multidisciplinary Optimization, 23:280–296, (2002). [Google Scholar]
- J. Fliege and A. Heseler. Constructing approximations to the efficient set of convex quadratic multiobjective programs. Technical report, Ergebnisberichte in Angewandte Mathematik, Fachbereich Mathematik, Universitet Dortmund, (2002). [Google Scholar]
- I. Y. Kim and O. de Weck. Adaptive weighted-sum method for bi-objective optimization: Pareto front generation. Structural and Multidisciplinary Optimization, 29(2):149–158, (2005). [Google Scholar]
- Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation Journal, 8(2):125–148, (2000). [CrossRef] [PubMed] [Google Scholar]
- Bazarov D., Markova I., Khidirov S., Vokhidov O., Uljaev F., and Raimova, I. Coastal and deep deformations of the riverbed in the area of a damless water intake. In E3S Web of Conferences 263, p. 02031 (2021). [CrossRef] [EDP Sciences] [Google Scholar]
- Kuchkarova D.F., Ismatov B.S., Khodjayev A.M. “The role of computer graphic software in the application of geometric modelling methods” INNOVATION 2021 collection of articles of the international scientific conference pp.73-75 (2021). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.