Open Access
Issue
E3S Web of Conf.
Volume 401, 2023
V International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2023)
Article Number 01045
Number of page(s) 13
Section Hydraulics of Structures, Hydraulic Engineering and Land Reclamation Construction
DOI https://doi.org/10.1051/e3sconf/202340101045
Published online 11 July 2023
  1. V.E. Seleznev, V.V. Aleshin, S.N. Spinning. Mathematical modeling of pipeline networks and channel systems: methods, models, algorithms / Ed. V.E. Seleznev. -M .: MAKS Press, 2007, 695 p. [Google Scholar]
  2. Deng Y. et al. A method for simulating the release of natural gas from the rupture of high-pressure pipelines in any terrain // Journal of Hazardous Materials Volume 342, 15 January 2018, Pages 418-428. https://doi.org/10.1016/j.jhazmat.2017.08.053 [CrossRef] [PubMed] [Google Scholar]
  3. Michael V. Lurie. Modeling of Oil Product and Gas Pipeline Transportation WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008. –214р. [Google Scholar]
  4. Peining Yu., Yi Li., Jing Wei., Ying Xu., Tao Zhang. Modeling the pressure drop of wet gas in horizontal pipe // Chinese Journal of Chemical Engineering Volume 25, Issue 7, July 2017, Pages 829-837 https://doi.org/10.1016/j.cjche.2016.10.024 [CrossRef] [Google Scholar]
  5. Lewandowski. New Numerical Methods for Transient Modeling of Gas Pipeline Networks. – NM: Pipeline Simulation Interest Group, 1995. [Google Scholar]
  6. G.B. Whitham F.R.S. Linear and Nonlinear Waves. – NY: John Wiley & Sons, 1974 [Google Scholar]
  7. I.K. Khuzhaev, Kh.A. Mamadaliev, M.A. Kukanov. Analytical solution of the problem of the propagation of a compaction wave in an inclined pipeline caused by the deceleration of a fluid // Problems of computational and applied mathematics, Tashkent, 2015, № 2, p. 65-79. [Google Scholar]
  8. V.V. Grachev, M.A. Huseynzade, B.I. Ksendz, E.I. Yakovlev. Complex piping systems. -M .: Nedra, 1982, 256 p. [Google Scholar]
  9. V.V. Grachev, S.G. Shcherbakov, E.I. Yakovlev. Dynamics of pipeline systems. -M .: Nauka, 1987, 438 p. [Google Scholar]
  10. Banda M.K., Herty M., Klar A. Gas flow in pipeline networks // Netw. Heterog. Media. Volume 1, Issue 1, Pages 41-56. https://bit.ly/2vKgGBQ [Google Scholar]
  11. Khujaev I., Bozorov J., Akhmadjonov S. Investigation of the propagation of waves of sudden changein mass flow rate offluid andgas in a”short” pipeline approach // 2019 IEEE Dynamics o Systems, Mechanisms and Machines (Dynamics). 05-07 Nov 2019 (Omsk, Russia) [Google Scholar]
  12. I.A. Charny. Unsteady motion of real liquid in pipes. Ed. 2nd. -M .: Nedra, 1975, 296 p. [Google Scholar]
  13. B.M. Budak, A.A. Samarski, A.N. Tikhonov. Sbornik zadach po matematicheskoi fizike. – M.: Nauka, 1972, 678 p. [Google Scholar]
  14. A.N. Tikhonov, A.A. Samarski. Uravnenia matematicheskoi fiziki. – M: Nauka, 1972, 736 p. [Google Scholar]
  15. Bermúdez A., López X., Vázquez-Cendón M.E. Treating network junctions in finite volume solution of transient gas flow models // Journal of Computational Physics. 2017, Vol. 344, p187-209. doi https://doi.org/10.1016/j.jcp.2017.04.066 [Google Scholar]
  16. Ebrahimi-Moghadam A. et al. CFD analysis of natural gas emission from damaged pipelines: Correlation development for leakage estimation // Journal of Cleaner Production Volume 199, 20 October 2018, Pages 257-271. https://doi.org/10.1016/j.jclepro.2018.07.127. [Google Scholar]
  17. Kurbatova G.I., Ermolaeva N.N. The Mathematical Models of Gas Transmission at Hyper-Pressure // Applied Mathematical Sciences, 2014. Vol. 8, No. 124. – P. 61916203. http://dx.doi.org/10.12988/ams.2014.47508 [CrossRef] [Google Scholar]
  18. Zhenhua Rui, Guoqing Han, He Zhang, Sai Wang, Hui Puc, Kegang Ling A new model to evaluate two leak points in a gas pipeline // Journal of Natural Gas Science and Engineering Volume 46, October 2017, Pages 491-497 [CrossRef] [Google Scholar]
  19. Khuzhaev, S. S. Akhmadjonov, and M. K. Mahkamov Modeling the Stages of Verification of the Suitability of a Short Section of a Gas Pipeline for Operation // Mathematical Models and Computer Simulations, 2022, Vol. 14, No. 6, pp. 972–983. [CrossRef] [Google Scholar]
  20. Kalitkin N.N. Numerical methods. – M.: Nauka, 1978. – 512 p. [Google Scholar]
  21. Samarskii A.A., Popov Yu.P. Difference schemes of gas dynamics. – M.: Nauka, 1975. – 352 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.