Open Access
Issue
E3S Web of Conf.
Volume 401, 2023
V International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2023)
Article Number 01050
Number of page(s) 13
Section Hydraulics of Structures, Hydraulic Engineering and Land Reclamation Construction
DOI https://doi.org/10.1051/e3sconf/202340101050
Published online 11 July 2023
  1. Zhuolin S., Qianqian C. and Chang H. The Influence of River Morphology on the Remote SensingBased Discharge Estimation: Implications for Satellite Virtual Gauge Establishment. Water, 14(23), (2022), DOI: 10.3390/w14233854. [Google Scholar]
  2. Chuen S. K., Kasturi D. K. Land use and land cover change and its impact on river morphology in Johor River Basin, Malaysia. Journal of Hydrology: Regional Studies, 41(1), ( 2022), DOI: 10.1016/j.ejrh.2022.101072. [Google Scholar]
  3. Chanapathi T., Thatikonda, S. Investigating the impact of climate and land-use land cover changes on hydrological predictions over the Krishna river basin under present and future scenarios. Science of The Total Environment, 721, (2020), https:.doi.org/10.1016/j.scitotenv.2020.137736. [CrossRef] [Google Scholar]
  4. Liu C., Jun X. Water problems and hydrological research in the Yellow River and the Huai and Hai River basins of China. Hydrological Processes, 18 (12), pp. 2197-2210, (2004),. https:.doi.org/10.1002/hyp.5524. [CrossRef] [Google Scholar]
  5. Shen Y., Chen Y. Global perspective on hydrology, water balance, and water resources management in arid basins. Hydrological Processes, 24 (2), pp. 129-135, (2010) [Google Scholar]
  6. Malin F. The Greatest Water Problem: The Inability to Link Environmental Security, Water Security and Food Security. International Journal of Water Resources Development, 17(4), pp. 539–554, (2010) [Google Scholar]
  7. Vikrant J., Nikita K., Raj A. Hydrogeomorphic advancements in river science for water security in India. Water Security, 16, (2022), DOI: 10.1016/j.wasec.2022.100118. [Google Scholar]
  8. Do D. D., Nguyen N. A., Doan T. H. Assessment of changes in water resources in the Dong Nai River Basin and its environs. Science, Technology, Irrigation and Environment, 47, pp. 19-26, (2014) [Google Scholar]
  9. Doan T.V., Le N.A., Hoang Ch.T., Kang T.V. Impact of climate change on sediment distribution in the Dong Nai River Basin. Journal of Hydrology, 16, pp. 9-15, (2018) [Google Scholar]
  10. Do D. H. Assessing the impact of urbanization, the construction of waterproofing structures on the already implemented Dong Nai -Sai Gon. Water Resources Scientific and Technical Journal, 48, pp. 22-30, (2018) [Google Scholar]
  11. Dinh P. H.,Le Q. N.,Tran T. S. Sustainable development in Ho Chi Minh City: Current status and policy implication. VNUHCM Journal of Science and Technology Development, 2, (2018) [Google Scholar]
  12. Tran T. K. O., Nguyen V. D., Pham T. T. The Impact of Public Expenditure on Economic Growth of Provinces and Cities in the Southern Key Economic Zone of Vietnam: Bayesian Approach. International Econometric Conference of Vietnam, (2021), DOI: 10.1007/978-3-030-77094-5_26. [Google Scholar]
  13. Ngo N. H. G., Chau N. X. Q., Do T. L., Pham D. K., Nguyen D. V. and Dung D. T. Statistical and Hydrological Evaluations of Water Dynamics in the Lower Sai Gon-Dong Nai River, Vietnam. Water, 14, pp. 130-161, (2022). https:.doi.org/10.3390/w14010130. [Google Scholar]
  14. Hoang V. H. Flow channel change of lower Dong Nai-Sai Gon river and suggestions of prevention solutions. Journal of Water Resources and Environmental Engineering, 23, pp. 30-51, (2008) [Google Scholar]
  15. Yu B., Zhao W. Theory and application of nonlinear river dynamics. International Journal of Sediment Research, 29, pp. 285–303, (2014) [CrossRef] [Google Scholar]
  16. Nikolay I. A., Roman S. C., Konstantin M. B. Channel changes in largest Russian rivers: natural and anthropogenic effects. International Journal of River Basin Management, (2013), DOI: 10.1080/15715124.2013.814660. [Google Scholar]
  17. G. M. Kondolf, Z. K. Rubin, and J. T. Minear. Dams on the Mekong: Cumulative sediment starvation. Water Resources Research, (2014), doi: 10.1002/2013WR014651. [Google Scholar]
  18. Dang D. N., Le T. H. B. Evaluate the performance of the tidal control system for Ho Chi Minh City. Journal of Science and Technology Irrigation, 65, pp. 35-55, (2021) [Google Scholar]
  19. Nguyen P. K., Da D. H., Da H. L. Evaluation of water indicators and water level changes in the Saigon River under the influence of Dau Tieng. Water Resources Scientific and Technical Journal, 44, pp. 15-32, (2018) [Google Scholar]
  20. Tran H. T. Assessing the impact of climate change on floods in the lower reaches of the Dong Nai River. Scientific Journal of VNU, Earth Sciences, 27, pp. 25-31, (2011) [Google Scholar]
  21. Wang V.L. and Dang H.B. Impact of reservoir area reduction on water levels in the lower reaches of the Sai Gon-Dong Nai river system. International Journal of River Basin Management, 28, pp. 39-58, (2019), ISSN: 157-5124. [Google Scholar]
  22. Hoang T. T. N., Doan T. V., Le V. P., Can T. V. Calculation of current flooding level and solutions to flooding prevention in Van Thanh area – Ho Chi Minh City. Journal of Meteorology and Hydrology, 716, pp. 12-25, (2020), DOI: 10.36335/VNJHM.2020(716).12-25. [Google Scholar]
  23. Pham V. S., Dang D. T., Le X. B. Research results impact of reserver Dau Tieng disposal on Sai Gon river. Journal of hydraulic science and technology, 19, pp. 42-58, (2013) [Google Scholar]
  24. Tran T. H., Pham A. B., Nguyen P. D. Assessment of the change in discharge to Dau Tieng reservoir according to the climate change scenarios . Journal of Hydrometeorology, 720, pp. 61–77, (2020), doi: 10.36335/VNJHM.2020(720).61–77. [CrossRef] [Google Scholar]
  25. Rabindra K. P., Niranjan P., Biplab B. Simulation of river stage using artificial neural network and MIKE 11 hydrodynamic model. Computers & Geosciences, 36, pp. 735-745, (2010), https:.doi.org/10.1016/j.cageo.2009.07.012. [CrossRef] [Google Scholar]
  26. Alain S., Lincon B. Understanding the suitability of MIKE 21 and HEC-RAS for 2D floodplain modeling. World Environment and Water Congress, (2020). DOI: 10.1061/9780784482971.024. [Google Scholar]
  27. Rana A., Singh P. and Kunj V. Urban flooding in Gothenburg -MIKE21 study. VATTEN -Journal of Water Management and Research, 3(68), pp. 175–184, (2012) [Google Scholar]
  28. Moriasi D. N., Arnold J. G., Van Lew M. W., Bingner R. L., Harmel R. D., Veit T. L. A model evaluation guide for systematically quantifying the accuracy of watershed modeling. Transaction ASABE, 50, pp. 885-900, (2007) [CrossRef] [Google Scholar]
  29. Bazarov, D. R., Norkulov, B. E., Kurbanov, A. I., Jamolov, F. N., & Jumabayeva, G. U. Improving methods of increasing reliability without dam water intake. In AIP Conference Proceedings, Vol. 2612, No. 1. AIP Publishing. (2023). [Google Scholar]
  30. Bazarov, D., Krutov, A., Sahakian, A., Vokhidov, O., Raimov, K., & Raimova, I. Numerical models to forecast water quality. In AIP Conference Proceedings, Vol. 2612, No. 1, p. 020001. AIP Publishing LLC. (2023). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.