Open Access
Issue
E3S Web of Conf.
Volume 401, 2023
V International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2023)
Article Number 02003
Number of page(s) 13
Section Ecology, Hydropower Engineering and Modeling of Physical Processes
DOI https://doi.org/10.1051/e3sconf/202340102003
Published online 11 July 2023
  1. Okulov N.A. On a numerical method for solving one-dimensional Stefan-type problems. Computational methods and programming. 2011. V. 12. No. 2. P. 238-246. [Google Scholar]
  2. Colin Rogers . On a class of reciprocal Stefan moving boundary problems. Zeitschrift für angewandte Mathematik und Physik volume 66, pages2069–2079 (2015). [CrossRef] [Google Scholar]
  3. Sultanov K., Khusanov B., Rikhsieva B. Interaction of a rigid underground pipeline with elasticviscous-plastic soil. CONMECHYDRO – 2020 IOP Conf. Series: Materials Science and Engineering 883 (2020) 012038 IOP Publishing doi:10.1088/1757-899X/883/1/012038. [Google Scholar]
  4. Ivan Shatskyi, Vasyl Perepichka, Maksym Vaskovskyi. Longitudinal waves in an elastic rod caused by sudden damage to the foundation . Theoretical and applied mechanics. 48 (2021) Issue 1, 29–37. https://doi.org/10.2298/TAM200615001S. [CrossRef] [Google Scholar]
  5. Kiselev A.B. , Serezhkin A.A. The distinctive features of the collision between an elastoplastic cylinder and a non-deformable obstacle. Journal of Applied Mathematics and Mechanics, Volume 79, Issue 4, 2015, Pages 403-410. https://doi.org/10.1016/j.jappmathmech.2016.01.011. [CrossRef] [Google Scholar]
  6. Duong Tuan Manh. Normal Impact of A Rigid Cone-shaped against A Viscoelastic Plate on Viscoelastic Foundation. VNU Journal of Science: Mathematics – Physics, Vol. 37, No. 4 (2021) 95-101. [Google Scholar]
  7. Barenblatt G.I., Ishlinsky A.Yu. On the impact of a viscous-plastic rod on a rigid barrier. AMM, vol. XXVI, 1962. [Google Scholar]
  8. Barenblatt G.I. On some approximate methods in the theory of one-dimensional nonstationary filtration. News of AS USSR. Ser. Tech. Sci. 1954, No.9.P.35-49. [Google Scholar]
  9. Begmatov A, Mamatova N.T. The problem of sudden loading of an elastic-plastic rod interacting with the environment. Problems of Mechanics, No. 2, 2019. –p. 44-52. [Google Scholar]
  10. Begmatov A, Khusanova B.B. On the problem of the impact of a viscous-plastic rod on a rigid barrier. Proc. of the international scientific conference “Actual problems of applied mathematics and information technologies”, Al-Khwarizmi, 2014, Tashkent. [Google Scholar]
  11. Ishlinsky A.Yu., Ivlev D.D. Mathematical theory of plasticity. –M.: Fizmatgiz, 2001. 707 p. [Google Scholar]
  12. Bityurin A. Mathematical modeling of the amplitude of transverse oscillations of homogeneous rods under longitudinal impact. Proc. of the Russian Academy of Sciences. Mechanics of Rigid Body, 2021, no. 2, p. 98-109. [Google Scholar]
  13. Bityurin A. Simulation of the maximum deflection of a stepped rod with an initial curvature upon impact with a rigid barrier. Proc. of the Russian Academy of Sciences. Mechanics of Rigid Body, 2019, no. 5, p. 131–141. [Google Scholar]
  14. Kilchevsky N.A. Theory of collision of solid bodies. -Kiev: Naukova Dumka, 1969. 246 p. [Google Scholar]
  15. Reddy J.N. An Introduction to Continuum Mechanics, Second Edition.-Cambridge Univ. Press, 2013. 450 p. [Google Scholar]
  16. Bondar V.S., Danshin V.V. Thermoviscoplastic cyclic deformation and destruction of materials. Izvestiya MSTU “MAMI”, Russia, 2014. [Google Scholar]
  17. Kiselev A.B. On the study of the process of unsteady expansion of thick-walled spherical and cylindrical viscoplastic shells, Vestn. Moscow university Ser. 1. Matem., mekh., 2012, no. 6, 20–25; Moscow University Mechanics Bulletin, 67:5-6 (2012), 116–121. [Google Scholar]
  18. Yaparova N.M.. Method for predicting the temperature state of a cylinder during heat treatment under conditions of incomplete initial information Bulletin of the South Ural State University 'FSAEIHE South Ural State University (National Research University), 2019. [Google Scholar]
  19. Bondar V.S. Danshin V.V. Thermoviscoplastic deformation and destruction of materials. Proceedings of MSTU, MAMI, No. 4 (22), 2014, v. 4 [Google Scholar]
  20. Bondar V.S., Danshin V.V., Kondratenko A.A. Thermoviscoplastic variant. // Bulletin of PNRPU, .Mechanics No. 1., 2016 [Google Scholar]
  21. Kantorovich L.V., Krylov V.I. Approximate methods of higher analysis. -M-L.: Fizmatgiz, 1962. [Google Scholar]
  22. Nikitin L.V. Statics and dynamics of rigid bodies with external dry friction. - M.: Moscow Lyceum, 1998. - 272 p. [Google Scholar]
  23. Manzhosov V.K. Simulation of the process of transformation of a longitudinal strain wave at the boundary of heterogeneous sections of a rod with a concentrated mass. Bulletin of UlGTU 1/2001 [Google Scholar]
  24. Manzhosov V.K. Transformation of a Longitudinal Strain Wave of Constant Intensity at the Boundaries of a Rod System // Mechanics and Control Processes. - Ulyanovsk: UlGTU, 1996.- P. 13-29. [Google Scholar]
  25. Manzhosov V.K. Reflection and passage of a longitudinal strain wave at the boundary of conjugated rods // Bulletin of UlGTU. - 1999, No. 1 - P. 70-78. [Google Scholar]
  26. Manzhosov V.K., Novikova I.A. Reflection and transition of a longitudinal wave with linear deformation under decreasing intensity in the rod connection with an elastic element. // Bulletin of SSTU, 2012, 3 (67). [Google Scholar]
  27. Shatsky I.P., Perepichka V.V. Propagation of a shock wave in an elastic rod with viscoplastic external resistance. Applied Mechanics and Theoretical Physics, 2013, vol. 54, No. 6. [Google Scholar]
  28. Mirzajanzade A.Kh. Problems of hydrodynamics of viscous-plastic fluids in oil production. -Baku: Aznefteizdat, 1959. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.