Open Access
Issue |
E3S Web of Conf.
Volume 401, 2023
V International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2023)
|
|
---|---|---|
Article Number | 02005 | |
Number of page(s) | 8 | |
Section | Ecology, Hydropower Engineering and Modeling of Physical Processes | |
DOI | https://doi.org/10.1051/e3sconf/202340102005 | |
Published online | 11 July 2023 |
- Tam N T, Dat H T, Tam P M, Trinh V T and Hung N T 2020 Agricultural Land-Use Mapping with Remote Sensing Data Agricultural Land-Use Mapping with Remote Sensing Data [Google Scholar]
- Baban S M J and Luke C 2000 Mapping agricultural land use using retrospective ground referenced data, satellite sensor imagery and GIS Int. J. Remote Sens. 21 1757–62 [CrossRef] [Google Scholar]
- Denton O A, Aduramigba-Modupe V O, Ojo A O, Adeoyolanu O D, Are K S, Adelana A O, Oyedele A O, Adetayo A O and Oke A O 2017 Assessment of spatial variability and mapping of soil properties for sustainable agricultural production using geographic information system techniques (GIS) Cogent Food Agric. 3 1–12 [CrossRef] [Google Scholar]
- Kavvadias A, Psomiadis E, Chanioti M, Gala E and Michas S 2015 Precision agriculture - Comparison and evaluation of innovative very high resolution (UAV) and LandSat data CEUR Workshop Proc. 1498 376–86 [Google Scholar]
- Yin H, Prishchepov A V., Kuemmerle T, Bleyhl B, Buchner J and Radeloff V C 2018 Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series Remote Sens. Environ. 210 12–24 [Google Scholar]
- Tantalaki N, Souravlas S and Roumeliotis M 2019 Data-Driven Decision Making in Precision Agriculture: The Rise of Big Data in Agricultural Systems J. Agric. Food Inf. 20 344–80 [CrossRef] [Google Scholar]
- Shi T, Li X, Xin L, Xu X and Etingoff K 2018 The spatial distribution of farmland abandonment and its influential factors at the township level: A case study in the mountainous area of China vol 70 (Elsevier) [Google Scholar]
- Tromboni F, Bortolini L and Martello M 2014 The use of water in the agricultural sector: A procedure for the assessment of large-scale irrigation efficiency with gis Irrig. Drain. 63 440–50 [CrossRef] [Google Scholar]
- Li B, Gong A, Chen Z, Pan X, Li L, Li J and Bao W 2023 An Object-Oriented Method for Extracting Single-Object Aquaculture Ponds from 10 m Resolution Sentinel-2 Images on Google Earth Engine Remote Sens. 15 856 [CrossRef] [Google Scholar]
- Wang M, Liu Z, Ali Baig M H, Wang Y, Li Y and Chen Y 2019 Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms Land use policy 88 104190 [CrossRef] [Google Scholar]
- Samasse K, Hanan N P, Anchang J Y and Diallo Y 2020 A High-Resolution Cropland Map for the West African Sahel Based on High-Density Training Data, Google Earth Engine, and Locally Optimized Machine Learning Remote Sens. 12 1436 [CrossRef] [Google Scholar]
- Khakimova K, Musaev I and Khamraliev A 2021 Basics of Atlas Mapping Optimization in the Fergana Valley ed L Foldvary and I Abdurahmanov E3S Web Conf. 227 02003 [Google Scholar]
- Oymatov R and Safayev S 2021 Creation of a complex electronic map of agriculture and agro-geo databases using GIS techniques E3S Web Conf. 258 1–12 [Google Scholar]
- Ten Y, Oymatov R, Khayitov K, Saydalieva G, Nulloev U and Nematov I 2021 Application of modern geodetic tools in the operation of railway reconstructions ed L Foldvary and I Abdurahmanov E3S Web Conf. 227 04004 [CrossRef] [EDP Sciences] [Google Scholar]
- Yakubov G, Mubarakov K, Abdullaev I and Ruziyev A 2021 Creating large-scale maps for agriculture using remote sensing ed L Foldvary and I Abdurahmanov E3S Web Conf. 227 03002 [CrossRef] [EDP Sciences] [Google Scholar]
- Khasanov S, Kulmatov R, Li F, van Amstel A, Bartholomeus H, Aslanov I, Sultonov K, Kholov N, Liu H and Chen G 2023 Impact assessment of soil salinity on crop production in Uzbekistan and its global significance Agric. Ecosyst. Environ. 342 108262 [CrossRef] [Google Scholar]
- Mukhtorov U, Aslanov I, Lapasov J, Eshnazarov D and Bakhriev M 2023 Creating Fertilizer Application Map via Precision Agriculture Using Sentinel-2 Data in Uzbekistan Uzbekkhon ed A Beskopylny, M Shamtsyan and V Artiukh Springer Int. Publ. 575 1915–21 [Google Scholar]
- Aslanov I, Jumaniyazov I and Embergenov N 2023 Remote Sensing for Land Use Monitoring in the Suburban Areas of Tashkent, Uzbekistan ed A Beskopylny, M Shamtsyan and V Artiukh Springer Int. Publ. 575 1899–907 [Google Scholar]
- Aslanov I 2022 Preface IOP Conf. Ser. Earth Environ. Sci. 1068 9–11 [Google Scholar]
- Oymatov R K, Mamatkulov Z J, Reimov M P, Makhsudov R I and Jaksibaev R N 2021 Methodology development for creating agricultural interactive maps IOP Conf. Ser. Earth Environ. Sci. 868 [Google Scholar]
- S. Egamberdiev, M Kholmurotov, E. Berdiev, T. Ochilov, R. Oymatov, and Z. Abdurakhmonov. Determination of substrate composition, light, and temperature for interior plant growth. E3S Web of Conferences 284, 03015 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
- S. Khasanov, R. Oymatov and R. Kulmatov. Canopy temperature: as an indicator of soil salinity (a casestudy in Syrdarya province, Uzbekistan). IOP Conf. Series: Earth and Environmental Science, 1142 (2023) 012109, (2023) [Google Scholar]
- Teshaev N, Mamadaliyev B, Ibragimov A and Khasanov S 2020 The soil-adjusted vegetation index for soil salinity assessment in Uzbekistan InterCarto. InterGIS 26 324–33 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.