Open Access
Issue
E3S Web of Conf.
Volume 401, 2023
V International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2023)
Article Number 02007
Number of page(s) 7
Section Ecology, Hydropower Engineering and Modeling of Physical Processes
DOI https://doi.org/10.1051/e3sconf/202340102007
Published online 11 July 2023
  1. Akhmedkhodjaeva I., Khodzhiev A., Rakhimov K. Method for calculating the solid runoff of rivers and silting of riverbed reservoirs. IOP Conf. Ser.: Earth Environ. Sci. 2022. DOI 10.1088/1755-1315/1112/1/012135. [Google Scholar]
  2. Dalabaev U., Ikramova M. Moving Node Method for Differential Equations. Numerical simulation. IntechOpen Book series. http://dx.doi.org/10.5772/intechopen.107340. [Google Scholar]
  3. Ikramova M., Khodzhiev A., Akhmedkhodjaeva I., Khoshimov S. Estimation of sediment volume in Tuyamuyun hydro complex dam on the Amudarya river. IOP Publishing: Materials Science and Engineering, #883 (2020) 012048 doi:10.1088/1757-899X/883/1/012048 P.9 [Google Scholar]
  4. Ikramova M., Akhmedkhodjaeva I., Khodzhiev A. The reservoirs capacity assessment: the Tuyamuyun hydro complex in Khorezm region of Uzbekistan. IOP Publishing: Earth and Environmental Science, #614 (2020) 012100 doi:10.1088/1755-1315/614/1/012100 [Google Scholar]
  5. Sabah, S. F., Fayaed, A., El-Shafie, A., & Jaafar, O. (2013). Reservoir-system simulation and optimization techniques. Stochastic Environmental Research and Risk Assessment, 27(7), 1751–1772. [CrossRef] [Google Scholar]
  6. Zhu, S., Ouyang, S., Zhou, J., Qiu, H., Qin, H., Huang, J., & Niu, X. (2022). Water balance calculation based on hydrodynamics in reservoir operation. Water, 14(13), 2001.https://doi.org/10.3390/w1413200 [CrossRef] [Google Scholar]
  7. Rakhuba, A. V., & Shmakova, M. V. (2015). Mathematical modeling of siltation dynamics as a factor of eutrophication of water masses of the Kuibyshev reservoir. Aquatic ecosystems, 49(2), 189-193. [Google Scholar]
  8. Vlatsky, V. V. (2010). Modeling of river runoff using GIS technology. Vestnik OSU, (9), 104-109. [Google Scholar]
  9. Kalinin, V. G., & Pyankov, S. V. (2010). Application of geoinformation technologies and hydrological research. Alex-Press LLC. [Google Scholar]
  10. Becker L., Yeh W. Optimization of real-time operation of a multiple reservoir system. Water Resources Research, 10(6). 1974, P. 1107–1112. [CrossRef] [Google Scholar]
  11. Heydari M., Othman F., Taghieh M. Optimization of Multiple and Multipurpose Reservoir System Operations by Using Matrix Structure (Case Study: Karun and Dez Reservoir Dams). PLoS One Journal, #11(6): 0156276. doi: [10.1371], 2016. P. 18. [Google Scholar]
  12. Alfredo R., Carlos E., Jose A. Hydrodynamic modeling in large reservoirs for water resources management. Federal University of Pernambuco, Brazil. Pp.10. [Google Scholar]
  13. Burnham J. Modeling Dams with Computational Fluid Dynamics: Past Success and New Directions. Annual Conference of the Association of State Dam Safety Officials, 855-893. [Google Scholar]
  14. Demeke, G., Asfaw D., Shiferaw Y. 3D Hydrodynamic Modeling Enhances the Design of Tendaho Dam Spillway, Ethiopia. Water 2019, Rr. 11-82. https://doi.org/10.3390/w11010082 [Google Scholar]
  15. Khosronejad A., Rennie C., Salehi Neishabouri S., Townsend R. 3D Numerical Modeling of Flow and Sediment Transport in Laboratory Channel Bends. Journal of hydraulic engineering. 2007,133(10). Pp. 1123-1134 [CrossRef] [Google Scholar]
  16. Li W., Guo Sh., Ampitiawatta A., Liu P., Guo F. A real-time dynamic flood prevention storage control model for Qingjiang cascade reservoirs. IAHS Press [Google Scholar]
  17. Xu, C., Han, Z., & Fu, H. (2022). Remote Sensing and Hydrologic-Hydrodynamic Modeling Integrated Approach for Rainfall-Runoff Simulation in Farm Dam Dominated Basin. Frontiers in Environmental Science, 9, 817684. https://doi.org/10.3389/fenvs.2021.817684 [CrossRef] [Google Scholar]
  18. Zhang, L. (2009). 3D numerical modeling of hydrodynamic flow, sediment deposition and transport in stormwater ponds and alluvial channels. (Unpublished doctoral dissertation). Old Dominion University, Civil&Environmental Engineering. https://doi.org/10.25777/awrd-tp65 [Google Scholar]
  19. Calmant S., Berge-Nguyen M. & Cazenave A. (2002). Global seafloor topography from a least-squares inversion of altimetry-based high-resolution mean sea surface and shipboard soundings. Geophysical Journal International, 151(3). Rr. 795–808. [CrossRef] [Google Scholar]
  20. Marks, K., Smith, W., & Sandwell, D. (2010). Evolution of errors in the altimetric bathymetry model used by Google Earth and GEBCO. Marine Geophysical Researches, 31(3), 223–238. [CrossRef] [Google Scholar]
  21. Raghu, V., & Reddy, K. (2011). Hydro-geomorphological mapping at village level using high resolution satellite data and impact analysis of check dams in part of Akuledu Vanka watershed. Journal of Indian Geophysical Union, 15, 1-8. [Google Scholar]
  22. Sandwell, D., Smith, W., Gille, S., Kappel, E., Jayne, S., Soofi, K., et al. (2006). Bathymetry from space: Rationale and requirements for a new, high-resolution altimetric mission. Comptes Rendus Geoscience, 338(14). [Google Scholar]
  23. Prokacheva, V. G., & Usachev, V. F. (2006). Aerospace methods in hydrology. Nedra. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.