Open Access
Issue
E3S Web of Conf.
Volume 401, 2023
V International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2023)
Article Number 02018
Number of page(s) 11
Section Ecology, Hydropower Engineering and Modeling of Physical Processes
DOI https://doi.org/10.1051/e3sconf/202340102018
Published online 11 July 2023
  1. Abdullayev A., Safarbayeva N., Shamsitdinov S. Mathematical model of the dynamics of soil humidity and underground waters. AIP Conference Proceedings, 2023, 2700, 050003. [CrossRef] [Google Scholar]
  2. Reza Bahaadini, Ali Reza Saidi. (2018) Stability analysis of thin-walled spinning reinforced pipes conveying fluid in thermal environment. European Journal of Mechanics - A/Solids, 72, 298-309. [CrossRef] [Google Scholar]
  3. B.I. Islomov, A.A. Abdullayev A Boundary Value Problem with a Conormal Derivative for a Mixed-Type Equation of the Second Kind with a Conjugation Condition of the Frankl Type (2022) Russian Mathematics, 66 (9), pp. 11-25. [CrossRef] [Google Scholar]
  4. A. Abdullayev, M. Hidoyatova. Exact method to solve finite difference equations of linear heat transfer problems (2021) AIP Conference Proceedings, 2402, № 070021. [CrossRef] [Google Scholar]
  5. A. Abdullayev, K.Kholturayev, N. Safarbayeva, Exact method to solve of linear heat transfer problems (2021) E3S Web of Conferences, 264, № 02059. [CrossRef] [EDP Sciences] [Google Scholar]
  6. A. Abdullayev, K.Zhuvanov, K.Ruzmetov. A generalized solution of a modified Cauchy problem of class R2 for a hyperbolic equation of the second kind. (2021) Journal of Physics: Conference Series, 1889 (2), № 022121. [CrossRef] [Google Scholar]
  7. Badalov F.B., Eshmatov Kh., Yusupov M. (1987). Some Methods of Solution of the Systems of Integro-differential Equations in Problems of Viscoelasticity, Applied Mathematics and Mechanics 51(5), 867-871. [Google Scholar]
  8. 9. Srivastava H.M., Hasanov A., Ergashev T.G. A family of potentials for elliptic equations with one singular coefficient and their applications//Mathematical Methods in Applied Sciences. 2020. Vol.43, Issue 10. Pages 6181-6199. [CrossRef] [Google Scholar]
  9. Ergashev T.G., Komilova N.J. The Kampe de Feriet Series and the Regular Solution of the Cauchy Problem for Degenerating Hyperbolic Equation of the Second Kind. Lobachevskii Journal of Mathematics, 2022, Vol. 43, №11. 3616-3625. [CrossRef] [Google Scholar]
  10. Ergashev T.G., Tulakova Z.R. A problem with mixed boundary conditions for a singular elliptic equation in an infinite domain // Russian Mathematics, 2022, Vol. 66, No. 7, pp. 51–63. [CrossRef] [Google Scholar]
  11. Berdyshev A.S., Hasanov A., Ergashev T.G. Double-Layer Potentials for a generalized Bi-Axially Symmetric Helmholtz Equation.II. Complex Variables and Elliptic Equations. 2020,Volume 65, Issue 2. P.316-332. [CrossRef] [Google Scholar]
  12. Urinov A.K., Okboev A.B. Modified Cauchy Problem for one Degenerate Hyperbolic Equation of the Second Kind. Ukrainian Mathematical Journal, 2020, 72(1), pp. 114–135 [CrossRef] [Google Scholar]
  13. Islomov B.I., Akhmadov I.A. A Nonlocal Boundary Value Problem with the Frankl Condition for an Equation of Mixed Parabolic-Hyperbolic Type with the Fractional Gerasimov–Caputo Operator. Lobachevskii Journal of Mathematics, 2022, 43(3), pp. 755–761 [CrossRef] [Google Scholar]
  14. Islomov B.I., Juraev F.M. Local boundary value problems for a loaded equation of parabolic-hyperbolic type degenerating inside the domain. Ufa Mathematical Journal, 2022, 14(1), pp. 37–51 [Google Scholar]
  15. Khudayarov, B. and Turaev, F. (2022), “Numerical simulation of a viscoelastic pipeline vibration under pulsating fluid flow”, Multidiscipline Modeling in Materials and Structures, Vol. 18 No. 2, pp. 219-237. [CrossRef] [Google Scholar]
  16. Khudayarov, B., Turaev, F., Kucharov, O. (2019) Computer simulation of oscillatory processes of viscoelastic elements of thin-walled structures in a gas flow. E3S Web of Conferences. 97, 06008. [CrossRef] [EDP Sciences] [Google Scholar]
  17. Khudayarov, B., Turaev, F., Vakhobov, V., Gulamov, O., Shodiyev, S. (2020) Dynamic stability and vibrations of thin-walled structures considering heredity properties of the material. IOP Conference Series: Materials Science and Engineering 869(5), 052021. [CrossRef] [Google Scholar]
  18. Khudayarov, B.A. (2005) Flutter analysis of viscoelastic sandwich plate in supersonic flow. American Society of Mechanical Engineers, Applied Mechanics Division, AMD. 256, 11-17 [Google Scholar]
  19. Khudayarov, B.A. (2005) Numerical analysis of the nonlinear flutter of viscoelastic plates. International Applied Mechanics. 41(5), 538-542. [CrossRef] [Google Scholar]
  20. Khudayarov, B.A. (2010) Flutter of a viscoelastic plate in a supersonic gas flow. International Applied Mechanics. 46(4), 455-460. [CrossRef] [Google Scholar]
  21. Khudayarov, B.A., Bandurin, N.G. (2007) Numerical investigation of nonlinear vibrations of viscoelastic plates and cylindrical panels in a gas flow.. Journal of Applied Mechanics and Technical Physics. 48(2), 279-284. [CrossRef] [Google Scholar]
  22. Khudayarov, B.A., Turaev, F.Z. (2019) Nonlinear supersonic flutter for the viscoelastic orthotropic cylindrical shells in supersonic flow. Aerospace Science and Technology. 84, 120-130. [CrossRef] [Google Scholar]
  23. Khudayarov, B.A., Turaev, F.Z. (2020) Mathematical modeling parametric vibrations of the pipeline with pulsating fluid flow. IOP Conference Series: Earth and Environmental Science 614(1), 012103. [CrossRef] [Google Scholar]
  24. Khudayarov, B.A. (2019) Modeling of supersonic nonlinear flutter of plates on a visco-elastic foundation. Advances in Aircraft and Spacecraft Science. 6(3), 257-272 [Google Scholar]
  25. Khudayarov, B. A., Turaev,F. Zh. (2016). Numerical simulation of nonlinear oscillations of a viscoelastic pipeline with fluid. Vestnik of Tomsk State University. Mathematics and mechanics,5(43), 90–98. [CrossRef] [Google Scholar]
  26. Khudayarov, B. A., Turaev,F. Zh. (2019). Mathematical Simulation of Nonlinear Oscillations of Viscoelastic Pipelines Conveying Fluid. Applied Mathematical Modelling, 66, 662-679. [CrossRef] [Google Scholar]
  27. Khudayarov, B. A., Komilova, Kh. M. (2019). Vibration and dynamic stability of composite pipelines conveying a two-phase fluid flows. Engineering Failure Analysis 104, 500-512. [CrossRef] [Google Scholar]
  28. Khudayarov, B. A., Komilova, Kh. M., TuraevF. Zh. (2019).The effect of two-parameter of Pasternak foundations on the oscillations of composite pipelines conveying gas-containing fluids. International Journal of Pressure Vessels and Piping, Vol. 176. [Google Scholar]
  29. Khudayarov, B. A., Komilova, Kh. M., Turaev,F. Zh. (2020). Dynamic analysis of the suspended composite pipelines conveying pulsating fluid. Journal of Natural Gas Science and Engineering, 75, 103148. https://doi.org/10.1016/j.jngse.2020.103148. [CrossRef] [Google Scholar]
  30. Khudayarov, B. A., Komilova, Kh. M. , and Turaev,F. Zh. (2019). Numerical Simulation of Vibration of Composite Pipelines Conveying Pulsating Fluid.International Journal of Applied Mechanics,11(9), 1950090. [CrossRef] [Google Scholar]
  31. Komilova Kh.M. (2020) Numerical modeling of vibration fatigue of viscoelastic pipelines conveying pulsating fluid flow. International Journal of Modeling, Simulation, and Scientific Computing (IJMSSC), 11(03), 2050024-1-2050024-18. [Google Scholar]
  32. Islomov B.I., Alikulov E.K. Analogues of the Cauchy-Goursat problem for a loaded third-order hyperbolic type equation in an infinite three-dimensional domain. Siberian Electronic Mathematical Reports, 2021, 18, pp. 72–85. [Google Scholar]
  33. V.Vahobov, A. Abdullayev, K.Kholturayev, M. Hidoyatova, A.Raxmatullayev. On asymptotics of optimal parameters of statistical acceptance control. (2020) Journal of Critical Reviews, 7 (11), pp. 330-332. [Google Scholar]
  34. A. Abdullayev, M. Hidoyatova, N. Safarbayeva. About one boundary-value problem arising in modeling dynamics of groundwater (2023) E3S Web of Conferences, 365, № 01016. [CrossRef] [EDP Sciences] [Google Scholar]
  35. Li Qian, Liu Wei, Lu Kuan, Yue Zhufeng. (2020), “Nonlinear Parametric Vibration of the Geometrically Imperfect Pipe Conveying Pulsating Fluid”, International Journal of Applied Mechanics, Vol.12(06), pp. 2050064. [CrossRef] [Google Scholar]
  36. Li Qian, Liu Wei, Lu Kuan, Yue Zhufeng. (2020), “Three-dimensional parametric resonance of fluid-conveying pipes in the pre-buckling and post-buckling states”, International Journal of Pressure Vessels and Piping, Vol.189(4), pp.104287. [Google Scholar]
  37. Badalov F.B., Khudayarov B.A., Abdukarimov A. (2007). Effect of the hereditary kernel on the solution of linear and nonlinear dynamic problems of hereditary deformable systems. Journal of Machinery Manufacture and Reliability 36, 328-335. [CrossRef] [Google Scholar]
  38. Mirsaburov M., Islamov N.B. On a problem with the Bitsadze-Samarsky condition on parallel characteristics for a mixed-type equation of the second kind. “Differential Equations”. 57 (10). 2021. pp.1384-1396. [Google Scholar]
  39. Salakhitdinov M.S., Islomov B.I. A nonlocal boundary-value problem with conormal derivative for a mixed-type equation with two inner degeneration lines and various orders of degeneracy. Russ Math. Izvestiya Vysshikh Uchebnykh Zavedenii. Mathematica. 2011. 55. pp. 42–49. [Google Scholar]
  40. Salakhitdinov M.S., Islamov N.B. Nonlocal boundary value problem with the Bitsadze-Samarsky condition for an equation of parabolic-hyperbolic type of the second kind. News of universities. Mathematics. Russia. 2015. Vol. 6. pp.43-52. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.