Open Access
Issue
E3S Web of Conf.
Volume 401, 2023
V International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2023)
Article Number 02022
Number of page(s) 10
Section Ecology, Hydropower Engineering and Modeling of Physical Processes
DOI https://doi.org/10.1051/e3sconf/202340102022
Published online 11 July 2023
  1. M.M. Aripov, Method of reference equations for solving nonlinear boundary value problems, (Tashkent: FAN), 137, (1988) [Google Scholar]
  2. M.M. Aripov, A. Khaidarov, Numerical modeling of nonlinear systems of reaction-diffusion type in the presence of convective transfer and source (absorption). Proceedings of the international conference dedicated to the 100th anniversary of Academician Tikhonov AN (Moscow, Moscow State University), 19, (2006) [Google Scholar]
  3. M. Aripov, Z. Rakhmonov, Numerical Simulation of a Nonlinear Problem of a Fast Diffusive Filtration with a Variable Density and Nonlocal Boundary Conditions. Proceedings of the, International Conference on Mathematical Methods, Mathematical Models and Simulation in Science and Engineering, (2014) [Google Scholar]
  4. G. V. Vasilyeva, Interaction of a wet capillary-porous body with a heated gas flow. Engineering Physics Journal (No 3), 17, 463, (1969) [Google Scholar]
  5. A. G. Ivakhnenko, J. A. Muller, Self-organization of predictive models. (Kiev: Tekhnika), 278, (1985) [Google Scholar]
  6. A. I. Kaidanov, On the choice of coordinate functions in solving boundary value problems by the Galerkin methodEngineering Physics Journal(No 2), 18, 316, (1970) [Google Scholar]
  7. F. B. Abutaliyev, M. B. Baklushin, S. Karimbayeva, K. A. Kodirov, About modeling acceptance of the analysis and management ecological processProceeding of World Conference on Inteligent Systems forIndustrial Automation(Tashkent (September 14-16 2000). - Kaufering: Quadrat Verlag), (2000) [Google Scholar]
  8. P. V. Korchagin, Mathematical modeling of non-stationary mass transfer and turbulence in jets of convective clouds (Abstract, Stavropol), (2004) [Google Scholar]
  9. Y. Li, C. Zhang, Global existence of solutions to a cross-diffusion system in higher dimensional domains. Discrete Contin. Dynam. Sys, 12, 185, (2005) [CrossRef] [Google Scholar]
  10. Z. Wen, S. Fu, Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics. J. Comput. Appl. Math. 230, 34, (2009) [CrossRef] [Google Scholar]
  11. Z. Wen, S. Fu, Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics. J. Comput. Appl. Math. 230, 34, (2009) [CrossRef] [Google Scholar]
  12. W. Yang, A class of the quasilinear parabolic systems arising in population dynamics. Meth. Appl. Anal. 9, 261, (2002) [CrossRef] [Google Scholar]
  13. Y. Lou, T. Nagylaki, W.M. Ni, On difusion-induced blowups in a mutu-alistic model. Nonlin. Anal.: Theory Meth. Appl. 45, 329, (2001) [CrossRef] [Google Scholar]
  14. Y. Choi, R. Lui, Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion. Discrete Con-tin. Dynam. Sys. A 9, 1193, (2003) [CrossRef] [Google Scholar]
  15. W. Gan, Z. Lin, Coexistence and asymptotic periodicity in a competitor-competitor-mutualist model. J. Math. Anal. Appl. 337, 1089, (2008) [CrossRef] [Google Scholar]
  16. K. Ryu, I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions. Discrete Contin. Dynam. Sys. A 9, 1049, (2003) [CrossRef] [Google Scholar]
  17. K. Ryu, I. Ahn, Coexistence states of certain population models with nonlinear diffusions among multi-species. Dynam. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal. 12, 235, (2005) [Google Scholar]
  18. G. Li, M. Mei, Y. Wong, Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Math. Biosci. Engin, 5, 85, (2008) [CrossRef] [Google Scholar]
  19. X. Chen, Y. Qi, M. Wang, Steady states of a strongly coupled prey-predator model. Discrete Contin. Dynam. Sys., Suppl, 173, (2005) [Google Scholar]
  20. D. K. Muhamediyeva, Study parabolic type diffusion equations with double nonlinearity IOP Conf. Series:Journal of Physics(Conference Series), (2020) [Google Scholar]
  21. D. K. Muhamediyeva, Two-dimensional Model of the Reaction-Diffusion with Nonlocal Interaction 2019 International Conference on Information Science and Communications Technologies (ICISCT)(Tashkent, Uzbekistan), (2019) [Google Scholar]
  22. D. K. Muxamediyeva, Methods for solving the problem of the biological population in the two-caseIOP Conf. Series: Journal of Physics (Conf. Series 1210), (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.