Open Access
Issue
E3S Web of Conf.
Volume 401, 2023
V International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2023)
Article Number 02043
Number of page(s) 7
Section Ecology, Hydropower Engineering and Modeling of Physical Processes
DOI https://doi.org/10.1051/e3sconf/202340102043
Published online 11 July 2023
  1. Maxamadjan Miraxmedov, Azamat Khudoyorov, Khurshid Abdullaev, and Mavjuda Muzaffarova. Negative impact of wind on the condition of roads (road and rail) in the sandy desert, AIP Conference Proceedings 2432, 030051 (2022). [CrossRef] [Google Scholar]
  2. Djabbarov S., Abdullaev K. Protection of transport structures in sandy deserts from moving sands. Universum: Technical science: 2(95). (2022). [Google Scholar]
  3. Middleton N.J., Sternberg T. Climate hazards in drylands: A review. Earth-Sci.Rev. 126, 48–57. (2013). [CrossRef] [Google Scholar]
  4. Alghamdi A.A., Al-Kahtani N.S. Sand control measures and sand drift fences. J. Perform. Constr. Facil. 19, 295–299. (2005). [CrossRef] [Google Scholar]
  5. Zhang, C.L., Zou, X.Y., Cheng, H., Yang, S., Pan, X.H., Liu, Y.Z., Dong, G.R., Engineering measures to control windblown sand in Shiquanhe Town, Tibet. J.Wind Eng. Ind. Aerodyn. 95, 53–70. (2007). [CrossRef] [Google Scholar]
  6. Wang, X.M., Zhang, C.X., Hasi, E., Dong, Z.B., Has the Three Norths Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China?. J. Arid Environ. 74, 13–22. (2010). [CrossRef] [Google Scholar]
  7. Redding, J.H., Lord, J.A., Designing for the effects of windblown sand along the new Jessah-Riyadh-Dammam expressway, in: Symposium on Geotechnical Problems in Saudi Arabia, pp. 363–395. (1981). [Google Scholar]
  8. Bruno, L., Fransos, D., L. Giudice, A., Solid barriers for windblown sand mitigation: Aerodynamic behavior and conceptual design guidelines. J. Wind Eng.Ind. Aerodyn. 173, 79–90. (2018). [CrossRef] [Google Scholar]
  9. Raffaele, L., Bruno, L., Windblown sand action on civil structures: Definition and probabilistic modelling. Eng. Struct. 178, 88–101. (2019). [CrossRef] [Google Scholar]
  10. Abdullaev Kh.D. Modeling the Protection of Highways in the Areas of Moving Sands. International Journal of Current Science Research and Review, 5(10), 3873-3877, (2022). [Google Scholar]
  11. Guan, D., Zhang, Y., Zhu, T., A wind-tunnel study of windbreak drag. Agricultural and Forest Meteorology 118 (1-2), 75-84. (2003). [CrossRef] [Google Scholar]
  12. Dong, Z.B., Luo, W.Y., Qian, G.Q., Wang, H.T., A wind tunnel simulation of the mean velocity fields behind upright porous fences. Agricultural and Forest Meteorology 146 (1-2), 82-93. (2007). [CrossRef] [Google Scholar]
  13. Cornelis, W.M., Gabriels, D., Optimal windbreak design for wind-erosion control. Journal of Arid Environments 61 (2), 315-332. (2005). [CrossRef] [Google Scholar]
  14. Hu G., Dong Z., Zhang Z., Yang L., Hao L. Hesp P., Miot Da Silva G. Wind regime and aeolian landforms on the eastern shore of Qinghai Lake, Northeastern Tibetan Plateau, China. J. Arid Environ. 188, 104451. (2021). [CrossRef] [Google Scholar]
  15. Huang N., Gong, K., Xu, B., Zhao, J., Dun, H., He, W., Xin, G. Investigations into the law of sand particle accumulation over railway subgrade with windbreak wall. Eur. Phys. J. E. 42, 145. (2019). [CrossRef] [PubMed] [Google Scholar]
  16. Li, S.; Li, C.; Yao, D.; Ge, X.; Zhang, G.Wind tunnel experiments for dynamic modeling and analysis of motion trajectories of wind-blown sands. Eur. Phys. J. E 43, 22. (2020). [CrossRef] [PubMed] [Google Scholar]
  17. He W., Huang N., Xu, B., Wang W. Numerical simulation of wind-sand movement in the reversed flow region of a sand dune with a bridge built downstream. Eur. Phys. J. E 41, 53. (2018). [CrossRef] [PubMed] [Google Scholar]
  18. Xin G.; Huang N., Zhang J., Dun H. Investigations into the design of sand control fence for Gobi buildings. Aeolian Res. 49, 100662. (2021). [CrossRef] [Google Scholar]
  19. Xie S.; Qu J.; Zhang K.; Han Q.; Pang Y. The mechanism of sand damage at the Fushaliang section of the Liuyuan-Golmud expressway. Aeolian Res. 48, 100648. (2021). [CrossRef] [Google Scholar]
  20. Yintang L.; Yi G. Numerical simulation of aeolian dusty sand transport in a marginal desert region at the early entrainment stage. Geomorphology, 100, 335–344. (2008). [CrossRef] [Google Scholar]
  21. Shi L., Jiang, F., Han F. Numerical simulation of response law of wind-blown sand flow around the railway embankment. Tiedao Xuebao. J. China Railw. Soc. 36, 82–87. (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.