Open Access
Issue
E3S Web of Conf.
Volume 401, 2023
V International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2023)
Article Number 03040
Number of page(s) 13
Section Road Construction, Building Structures and Materials
DOI https://doi.org/10.1051/e3sconf/202340103040
Published online 11 July 2023
  1. Farazin, A., Zhang, C., Gheisizadeh, A., and Shahbazi, A. 3D bio-printing for use as bone replacement tissues: A review of biomedical application. Biomedical Engineering Advances, 100075. (2023). [Google Scholar]
  2. Sugiura, H., and Demura, S. Effects of mild and severe knee joint pain on various activities of daily living in the female elderly. Pain Research and Treatment, (2013). [Google Scholar]
  3. Nugent, M., Young, S. W., Frampton, C. M., and Hooper, G. J. The lifetime risk of revision following total hip arthroplasty: a new Zealand joint registry study. The bone and joint journal, 103(3), 479-485. (2021). [Google Scholar]
  4. Reakasame, S., and Boccaccini, A. R. Oxidized alginate-based hydrogels for tissue engineering applications: a review. Biomacromolecules, 19(1), 3-21. (2018). [CrossRef] [PubMed] [Google Scholar]
  5. Roddy, E., DeBaun, M. R., Daoud-Gray, A., Yang, Y. P., and Gardner, M. J. Treatment of critical-sized bone defects: clinical and tissue engineering perspectives. European Journal of Orthopaedic Surgery and Traumatology, 28, 351-362. (2018). [CrossRef] [PubMed] [Google Scholar]
  6. Bittner, S. M., Smith, B. T., Diaz-Gomez, L., Hudgins, C. D., Melchiorri, A. J., Scott,. W., and Mikos, A. G. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta biomaterialia, 90, 37-48. (2019). [CrossRef] [PubMed] [Google Scholar]
  7. Sanas, M. M., and Mulay, A. V. Evaluating biological behavior of Kelvin cellular bone scaffold. Materials Today: Proceedings, 62, 32-36. (2022). [CrossRef] [Google Scholar]
  8. Guo, S., Lu, Y., Wu, S., Liu, L., He, M., Zhao, C., and Lin, J. Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys. Materials Science and Engineering: C, 72, 631-640. (2017). [CrossRef] [Google Scholar]
  9. Sing, S. L., Yeong, W. Y., and Wiria, F. E. Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties. Journal of Alloys and Compounds, 660, 461-470. (2016). [CrossRef] [Google Scholar]
  10. Salvador, C. A., Maia, E. L., Costa, F. H., Escobar, J. D., and Oliveira, J. P. A compilation of experimental data on the mechanical properties and microstructural features of Ti-alloys. Scientific data, 9(1), 188. (2022). [Google Scholar]
  11. Callegari, B., Oliveira, J. P., Aristizabal, K., Coelho, R. S., Brito, P. P., Wu, L., and Pinto, H. C. In-situ synchrotron radiation study of the aging response of Ti-6Al-4V alloy with different starting microstructures. Materials Characterization, 165, 110400. (2020). [CrossRef] [Google Scholar]
  12. Jing, Z., Zhang, T., Xiu, P., Cai, H., Wei, Q., Fan, D., and Liu, Z. Functionalization of 3D-printed titanium alloy orthopedic implants: A literature review. Biomedical Materials, 15(5), 052003. (2020). [CrossRef] [Google Scholar]
  13. Goodman, S. B., Yao, Z., Keeney, M., and Yang, F. The future of biologic coatings for orthopaedic implants. Biomaterials, 34(13), 3174-3183. (2013). [CrossRef] [PubMed] [Google Scholar]
  14. Sheng, X., Wang, A., Wang, Z., Liu, H., Wang, J., and Li, C. Advanced Surface Modification for 3D-Printed Titanium Alloy Implant Interface Functionalization. Frontiers in bioengineering and biotechnology, 10. (2022). [CrossRef] [Google Scholar]
  15. Xiu, P., Jia, Z., Lv, J., Yin, C., Cheng, Y., Zhang, K., Liu, Z. Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface. ACS applied materials and interfaces, 8(28), 17964-17975. (2016). [CrossRef] [PubMed] [Google Scholar]
  16. Ni, R., Jing, Z., Xiong, C., Meng, D., Wei, C., and Cai, H. Effect of micro-arc oxidation surface modification of 3D-printed porous titanium alloys on biological properties. Annals of Translational Medicine, 10(12). (2022). [PubMed] [Google Scholar]
  17. Evlen, H., and Erel, G. Effect of the Reinforcement Phase on the Mechanical and Biocompatibility Properties of PLA Matrix Nano Composites. Polym. Korea, 45(4), 491-500. (2021). [CrossRef] [Google Scholar]
  18. Salahuddin, N., Abdelwahab, M., Gaber, M., and Elneanaey, S. Synthesis and Design of Norfloxacin drug delivery system based on PLA/TiO2 nanocomposites: Antibacterial and antitumor activities. Materials Science and Engineering: C, 108, 110337. (2020). [CrossRef] [Google Scholar]
  19. Gong, M., Zhao, Q., Dai, L., Li, Y., and Jiang, T. Fabrication of polylactic acid/hydroxyapatite/graphene oxide composite and their thermal stability, hydrophobic and mechanical properties. Journal of Asian Ceramic Societies, 5(2), 160-168. (2017). [CrossRef] [Google Scholar]
  20. Liu, Z., Chen, Y., Ding, W., and Zhang, C. Filling behavior, morphology evolution and crystallization behavior of microinjection molded poly (lactic acid)/hydroxyapatite nanocomposites. Composites Part A: Applied Science and Manufacturing, 72, 85-95. (2015). [CrossRef] [Google Scholar]
  21. Du, X., Fu, S., and Zhu, Y. 3D printing of ceramic-based scaffolds for bone tissue engineering: an overview. Journal of Materials Chemistry B, 6(27), 4397-4412. (2018). [CrossRef] [PubMed] [Google Scholar]
  22. Mamatha, S., Biswas, P., Das, D., and Johnson, R. Fabrication of complex shaped ceramic articles from 3D printed polylactic acid templates by replication process. Ceramics International, 45(15), 19577-19580. (2019). [CrossRef] [Google Scholar]
  23. Ma, Z., Mao, Z., and Gao, C. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids and Surfaces B: Biointerfaces, 60(2), 137-157. (2007). [CrossRef] [Google Scholar]
  24. Gu, Z., Fu, J., Lin, H., and He, Y. Development of 3D bioprinting: From printing methods to biomedical applications. Asian Journal of Pharmaceutical Sciences, 15(5), 529-557. (2020). [CrossRef] [PubMed] [Google Scholar]
  25. Klebe, R. J. Cytoscribing: a method for micropositioning cells and the construction of two-and three-dimensional synthetic tissues. Experimental cell research, 179(2), 362-373. (1988). [CrossRef] [PubMed] [Google Scholar]
  26. Foty, R. A., Pfleger, C. M., Forgacs, G., and Steinberg, M. S. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development, 122(5), 1611-1620. (1996). [CrossRef] [PubMed] [Google Scholar]
  27. Odde, D. J., and Renn, M. J. Laser-guided direct writing for applications in biotechnology. Trends in biotechnology, 17(10), 385-389. (1999). [CrossRef] [PubMed] [Google Scholar]
  28. Karzyński, K., Kosowska, K., Ambrożkiewicz, F., Berman, A., Cichoń, J., Klak, M., Wszoła, M. Use of 3D bioprinting in biomedical engineering for clinical application. Medical Studies/Studia Medyczne, 34(1), 93-97. (2018). [CrossRef] [Google Scholar]
  29. Landers, R., Hübner, U., Schmelzeisen, R., and Mülhaupt, R. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials, 23(23), 4437-4447. (2002). [CrossRef] [PubMed] [Google Scholar]
  30. Wilson Jr, W. C., and Boland, T. Cell and organ printing 1: protein and cell printers. The Anatomical Record Part A: discoveries in molecular, cellular, and evolutionary biology, 272(2), 491-496. (2003). [CrossRef] [Google Scholar]
  31. Dhariwala, B., Hunt, E., and Boland, T. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue engineering, 10(9-10), 1316-1322. (2004). [CrossRef] [PubMed] [Google Scholar]
  32. Jayasinghe, S. N., Qureshi, A. N., and Eagles, P. A. M. Electrohydrodynamic jet processing: An advanced electric-field-driven jetting phenomenon for processing living cells. Small [Internet]. 2 (2): 216–9. (2006). [CrossRef] [PubMed] [Google Scholar]
  33. Norotte, C., Marga, F. S., Niklason, L. E., and Forgacs, G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials, 30(30), 5910-5917. (2009). [CrossRef] [PubMed] [Google Scholar]
  34. Skardal, A., Mack, D., Kapetanovic, E., Atala, A., Jackson, J. D., Yoo, J., and Soker, S. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem cells translational medicine, 1(11), 792-802. (2012). [CrossRef] [PubMed] [Google Scholar]
  35. Duan, B. State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Annals of biomedical engineering, 45, 195-209. (2017). [CrossRef] [PubMed] [Google Scholar]
  36. Dababneh, A. B., and Ozbolat, I. T. Bioprinting technology: a current state-of-the-art review. Journal of Manufacturing Science and Engineering, 136(6). (2014). [CrossRef] [Google Scholar]
  37. Gao, Q., He, Y., Fu, J. Z., Liu, A., and Ma, L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials, 61, 203-215. (2015). [CrossRef] [PubMed] [Google Scholar]
  38. Pyo, S. H., Wang, P., Hwang, H. H., Zhu, W., Warner, J., and Chen, S. Continuous optical 3D printing of green aliphatic polyurethanes. ACS applied materials and interfaces, 9(1), 836-844. (2017). [CrossRef] [PubMed] [Google Scholar]
  39. Kang, H. W., Lee, S. J., Ko, I. K., Kengla, C., Yoo, J. J., and Atala, A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature biotechnology, 34(3), 312-319. (2016). [CrossRef] [PubMed] [Google Scholar]
  40. Noor, N., Shapira, A., Edri, R., Gal, I., Wertheim, L., and Dvir, T. 3D printing of personalized thick and perfusable cardiac patches and hearts. Advanced science, 6(11), 1900344. (2019). [CrossRef] [Google Scholar]
  41. Lee, A. R. H. A., Hudson, A. R., Shiwarski, D. J., Tashman, J. W., Hinton, T. J., Yerneni, S., Feinberg, A. W. 3D bioprinting of collagen to rebuild components of the human heart. Science, 365(6452), 482-487. (2019). [CrossRef] [PubMed] [Google Scholar]
  42. Tanzer, M., Chuang, P. J., Ngo, C. G., Song, L., and TenHuisen, K. S. Characterization of bone ingrowth and interface mechanics of a new porous 3D printed biomaterial: an animal study. The Bone and Joint Journal, 101(6_Supple_B), 62-67. (2019). [Google Scholar]
  43. Huang, H., Lan, P. H., Zhang, Y. Q., Li, X. K., Zhang, X., Yuan, C. F., ... and Guo, Z. Surface characterization and in vivo performance of plasma-sprayed hydroxyapatite-coated porous Ti6Al4V implants generated by electron beam melting. Surface and Coatings Technology, 283, 80-88. (2015). [CrossRef] [Google Scholar]
  44. Guo, Y., Wu, J., Xie, K., Tan, J., Yang, Y., Zhao, S., and Hao, Y. Study of bone regeneration and osteointegration effect of a novel selective laser-melted titanium-tantalum-niobium-zirconium alloy scaffold. ACS Biomaterials Science and Engineering, 5(12), 6463-6473. (2019). [CrossRef] [Google Scholar]
  45. Guo, Y., Xie, K., Jiang, W., Wang, L., Li, G., Zhao, S., and Hao, Y. In vitro and in vivo study of 3D-printed porous tantalum scaffolds for repairing bone defects. Acs Biomaterials Science and Engineering, 5(2), 1123-1133. (2018). [Google Scholar]
  46. Wu, S., Liu, X., Yeung, K. W., Liu, C., and Yang, X. Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering: R: Reports, 80, 1-36. (2014). [CrossRef] [Google Scholar]
  47. Hooijmans, C. R., Rovers, M. M., De Vries, R. B., Leenaars, M., Ritskes-Hoitinga, M., and Langendam, M. W. SYRCLE’s risk of bias tool for animal studies. BMC medical research methodology, 14, 1-9. (2014). [CrossRef] [PubMed] [Google Scholar]
  48. Hooijmans, C. R., Rovers, M. M., De Vries, R. B., Leenaars, M., Ritskes-Hoitinga, M., and Langendam, M. W. SYRCLE’s risk of bias tool for animal studies. BMC medical research methodology, 14, 1-9. (2014). [CrossRef] [PubMed] [Google Scholar]
  49. Ragone, V., Canciani, E., Arosio, M., Olimpo, M., Piras, L. A., von Degerfeld, M. M., and Dellavia, C. In vivo osseointegration of a randomized trabecular titanium structure obtained by an additive manufacturing technique. Journal of Materials Science: Materials in Medicine, 31, 1-11. (2020). [CrossRef] [Google Scholar]
  50. Wang, H., Su, K., Su, L., Liang, P., Ji, P., and Wang, C. The effect of 3D-printed Ti6Al4V scaffolds with various macropore structures on osteointegration and osteogenesis: A biomechanical evaluation. Journal of the mechanical behavior of biomedical materials, 88, 488-496. (2018). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.