Open Access
Issue |
E3S Web of Conf.
Volume 401, 2023
V International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2023)
|
|
---|---|---|
Article Number | 04023 | |
Number of page(s) | 9 | |
Section | Mechanization, Electrification of Agriculture and Renewable Energy Sources | |
DOI | https://doi.org/10.1051/e3sconf/202340104023 | |
Published online | 11 July 2023 |
- P. Narayanasamy, Microbial Plant Pathogens Detection and Disease Diagnosis (Fungal Pathogens. Springer), 291, (2011) [Google Scholar]
- M. B. Riley, M. R. Williamson, O. Maloy, Plant disease diagnosis (PHI), (2002) [Google Scholar]
- M. McNeil, A. M. Roberts, V. Cockerell, V. Mulholland, Real-time PCR assay for quantification of Tilletia caries contamination of UK wheat seed (Plant Pathology), 53, 741, (2004) [Google Scholar]
- N. P. Cherepanova, Sistematika gribov: ucheb. posobie (2-e izd. SPb.: Izd-voS.-Peterb. un-ta), 344, (2005) [Google Scholar]
- Smut bunt diseases of cereal biology, identification and management. Government of Western Australia Paplomatas E J Molecular diagnostics of fungal pathogens (Arab. J. Pl. Prot.) 24, 147, (2006) [Google Scholar]
- S. I. Bityukov, A. V. Maksimushkina, V. V. Smirnova, Comparison of histograms in physical research (Dated: 24 May 2016), (2016) [Google Scholar]
- E. Duveiller, R. P. Singh, P. K. Singh, A. A. Dababat, M. Mezzalama, Wheat diseases and pests: a guide for field identification (Mexico: CIMMYT), 138, (2012) [Google Scholar]
- B. Francesco, H. Richard, S. Paul, F. Antonio, Theoretical and experimental comparison of different approaches for colour texture classification (Dated: July 11, 2011), (2011) [Google Scholar]
- G. Jayme, B. Arnal, Digital image processing techniques for detecting, quantifying and classifying plant diseases (Barbedo Springer Plus 2013, 2:660), (2013) [Google Scholar]
- A. Vadivel, S. Shamik, A. K. Majumdar, An Integrated Color and Intensity Co-occurrence Matrix Communicated by R. Manmatha (29 March 2005), (2005) [Google Scholar]
- K. Matkovic. et al., Global Contrast Factor – a New Approach to Image Contrast Computational Aesthetics, 159, (2005) [Google Scholar]
- S. A. Kadnichanskiy, Assessment of the contrast of digital aerial and satellite images Geodesy and Cartography (No 3), 46, (2018) [Google Scholar]
- V. V. Starovoitov, Refinement of the index of structural similarity of images SSIM Informatics (No. 3) 15, 7, (2018) [Google Scholar]
- S. A. Golestaneh, D. M. Chandler, No-reference quality assessment of JPEG images via a quality relevance map IEEE Signal Processing Letters (No 2) 21, 155, (2014) [Google Scholar]
- A. Graves, et al., Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks Proceedings of the 23rd international conference on Machine learning (ACM), 369, (2006) [Google Scholar]
- Th. Bluche, Deep Neural Networks for Large Vocabulary Handwritten Text Recognition PhD thesis. Université Paris Sud-Paris XI, 268, (2015) [Google Scholar]
- P. Doetsch, K. Michal, N. Hermann, Fast and robust training of recurrent neural networks for offline handwriting recognition Frontiers in Handwriting Recognition (ICFHR), 14th International Conference on. IEEE, 279, (2014) [Google Scholar]
- A. Graves, S. Jürgen, Offline handwriting recognition with multidimensional recurrent neural networks Advancesinneural information processing systems, 545, (2009) [Google Scholar]
- Th. Bluche, N. Hermann, K. Christopher, A Comparison of Sequence-Trained Deep Neural Networks and Recurrent Neural Networks Optical Modeling for Handwriting Recognition International BIBLIOGRAPHY 153 Conference on Statistical Language and Speech Processing (Springer), 199, (2014) [Google Scholar]
- Th. Bluche et al., The asiaarabic handwritten text recognition system at the open hart2013 evaluation Document Analysis Systems (DAS), 11th IAPR International Workshop on. IEEE, 161, (2014) [Google Scholar]
- Z. Sh. Juraev, D. T. Muhamediyeva, D. M. Sotvoldiev, IOP Conf. Journal of Physics: Conf. (Series 1546(1)012083), (2020) [CrossRef] [Google Scholar]
- D. Muhamediyeva, D. Sotvoldiyev, S. Mirzaraxmedova, M. Fozilova, Approaches to handwriting recognition International Conference on Information Science and Communications Technologies, ICISCT 2020, (9351505. 4-6 november. DOI: 10.1109/ICISCT50599.2020.9351505), (2020) [Google Scholar]
- Sh. R. Farmonov, T. F. Bekmuratov, D. T. Muhamedieva, About the dodges plans of the continuous selective control International Conference on Information Science and Communications Technologies, ICISCT 2020 (9351415. 4-6 november. DOI: 10.1109/ICISCT50599.2020.9351415), (2020) [Google Scholar]
- K. Mirzayan, M. Dilnoz, S. Barno, The Problem of Classifying and Managing Risk Situations in Poorly Formed Processes Aliev R.A., Yusupbekov N.R., Kacprzyk J., Pedrycz W., Sadikoglu F.M. (eds) 11th World Conference “Intelligent System for Industrial Automation” (WCIS-2020) (WCIS 2020. Advances in Intelligent Systems and Computing, Springer, Cham. https://doi.org/10.1007/978-3-030-68004-6_36) 1323, 280, (2021) [Google Scholar]
- D. T. Mukhamedieva, Journal of Physics: Conference Series (1546(1) 012091), (2020) [CrossRef] [Google Scholar]
- D. K. Muxamediyeva, IOP Conf.Journal of Physics: Conf. Series (1210), (2019) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.