Open Access
Issue |
E3S Web of Conf.
Volume 401, 2023
V International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2023)
|
|
---|---|---|
Article Number | 04062 | |
Number of page(s) | 10 | |
Section | Mechanization, Electrification of Agriculture and Renewable Energy Sources | |
DOI | https://doi.org/10.1051/e3sconf/202340104062 | |
Published online | 11 July 2023 |
- Asrakulova D. and Elmurodov A.N., A reaction-diffusion-advection competition model with a free boundary. Uzbek Mathematical Journal 65(3), 25-37 (2021). [CrossRef] [Google Scholar]
- Chen X, Friedman A. A free boundary problem arising in a model of wound healing, SIAM J. Math. Anal. 2000, Vol.32, pp. 778-800. [CrossRef] [Google Scholar]
- Duan B., Zhang Z.C. A two-species weak competition system of reaction-diffusion-advection with double free boundaries, Discrete Contin. Dyn. Syst. Ser. B, 2019, Vol.24, No.2, pp. 801-829. [Google Scholar]
- Du, Y.H., Lin, Z.G. The diffusive competition model with a free boundary: invasion of a superior or inferior competitor. Discrete Contin. Dyn. Syst. B, 19(2014), 3105-3132. [Google Scholar]
- Elmurodov A.N., The paper considers the two-phase Stefan problem for systems of reaction-diffusion equations. Uzbek Mathematical Journal №4, 54--64 (2019). [CrossRef] [Google Scholar]
- Guo, J.S., Wu, C.H. On a free boundary problem for a two-species weak competition system. // J. Dynam.Diff. Equat., 24(2012), 873-895. [CrossRef] [Google Scholar]
- Friedman A. Free boundary problems in biology. Philos Trans R Soc. 2015, A 373: 20140368. [Google Scholar]
- Kruzhkov S. N., Nonlinear parabolic equations in two independent variables. Trans. Moscow Math. Sot. 1967, Vol. 16, pp. 355-373 (Russian). [Google Scholar]
- Ladyzenskaja O. A., Solonnikov V. A. and Ural’ceva N. N. Linear and quasilinear equations of parabolic type. Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 1968. [Google Scholar]
- Liu Y., Guo Z. El Smaily M. and Wang L. Biological invasion in a predator–prey model with a free boundary, //Liu et al. Boundary Value Problems (2019) 2019:33 https://doi.org/10.1186/s13661-019-1147-7 [CrossRef] [Google Scholar]
- Lin Z.G., A free boundary problem for a predator-prey model, Nonlinearity 20 (2007), pp.1883–1892. [CrossRef] [Google Scholar]
- Pao C.V. Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York, 1992. [Google Scholar]
- Ren-Hu Wang, Lei Wang, Zhi-Cheng Wang Free boundary problem of a reaction-diffusion equation with nonlinear convection term, J. Math.Anal.Appl. 2018, Vol. 467, pp. 1233-1257. [CrossRef] [Google Scholar]
- Wang, M.X., Zhang, Y. Two kinds of free boundary problems for the diffusive preypredator model. // Nonlinear Anal.: Real World Appl., 24(2015), 73-82. [CrossRef] [Google Scholar]
- Wu, C.H. The minimal habitat size for spreading in a weak competition system with two free boundaries. J.Diff. Equat., 259(2015), 873-897. [CrossRef] [Google Scholar]
- Zhou L. An evolutional free-boundary problem of a reaction-diffusion-advection system. Proceedings of the Royal Society of Edinburgh. 2017. Vol. 147, Issue 3. pp. 615-648. [CrossRef] [Google Scholar]
- Zhang Y., Wang M. A free boundary problem of the ratio-dependent prey-predator model. //Appl.Anal. (2015), 94(10), pp. 2147-2167. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.