Open Access
Issue
E3S Web of Conf.
Volume 401, 2023
V International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2023)
Article Number 05022
Number of page(s) 14
Section Engineering Materials Science, Intelligent Transport Systems and Transport Logistics
DOI https://doi.org/10.1051/e3sconf/202340105022
Published online 11 July 2023
  1. N. Li, “Research on Electromagnetic Transient Process of Electric Locomotive System,” Beijing: Beijing Jiaotong univerisity, 2010. [Google Scholar]
  2. Janse van Rensburg, J., 2007. Development of a Flywheel Energy Storage System -Uninterrupted Power Supply (FLY-UPS), Potchefstroom: North West University: Disseration for Masters in Mechanical Engineering. [Google Scholar]
  3. Mulder, M., 2014. Transnet Diesel Locomotive Fuel Consumption Tables. Pretoria: Transnet Freight Rail; Train Design Department. [Google Scholar]
  4. Mayet, C., Pouget, J., Bouscayrol, A. & Lhomme, W., 2014. Influence of an Energy Storage System on the Energy Consumption of a Diesel-Electric Locomotive. IEEE Transaction on Vehicular Technology, 63(3). [Google Scholar]
  5. Tursunov, N.K., Semin, A.E., Sanokulov, E.A. Study of desulfurization process of structural steel using solid slag mixtures and rare earth metals, (2016) Chernye Metally, (4), pp. 32-37. [Google Scholar]
  6. Tursunov N. K., Semin A. E., Kotelnikov G. I. Kinetic features of desulphurization process during steel melting in induction crucible furnace. Chernye Metally. 2017. No. 5. pp. 23–29. [Google Scholar]
  7. Tursunov N. K., Semin A. E., Sanokulov E. A. Study of dephosphoration and desulphurization processes in the smelting of 20GL steel in the induction crucible furnace with consequent ladle treatment using rare earth metals. Chernye Metally. 2017. No. 1. pp. 33–40. [Google Scholar]
  8. Otabek Toirov and Nodirjon Tursunov, “Development of production technology of rolling stock cast parts”, E3S Web of Conferences 264, 05013 (2021). [CrossRef] [EDP Sciences] [Google Scholar]
  9. Yin J, et al (2017) Research and development of automatic train operation for railway transportation systems: a survey. Transp Res Part C Emerg Technol 85:548–572. [CrossRef] [Google Scholar]
  10. Frilli A, et al (2016) Energetic optimization of regenerative braking for high-speed railway systems. Energy Conv Manag 129:200–215. [CrossRef] [Google Scholar]
  11. Gu Q, Tang T, Ma F (2015) Energy-efficient train tracking operation based on multiple optimization models. IEEE Trans Intell Transp Syst 17(3):882–892. [Google Scholar]
  12. Ayesta I, Izquierdo B, Flaño O, Sánchez JA, Albizuri J, Avilés R (2016) Influence of the WEDM process on the fatigue behavior of Inconel® 718. International Journal of Fatigue 92:220–233. Available at: https://doi.org/10.1016/j.ijfatigue.2016.07.011 [Google Scholar]
  13. Naveen Babu K, Karthikeyan R, Punitha A (2019) An integrated ANN -PSO approach to optimize the material removal rate and surface roughness of wire cut EDM on INCONEL 750. Materials Today: Proceedings 19:501–505. Available at: https://doi.org/10.1016/j.matpr.2019.07.643 [Google Scholar]
  14. Varol Ozkavak H, Sofu MM, Duman B, Bacak S (2021) Estimating surface roughness for different EDM processing parameters on Inconel 718 using GEP and ANN. CIRP Journal of Manufacturing Science and Technology 33:306–314. [CrossRef] [Google Scholar]
  15. Pavan C, Sateesh N, Subbiah R (2021) Taguchi analysis on machinability of Inconel 600 using Copper, Brass, and Copper tungsten electrodes in EDM. Materials Today: Proceedings 46(2021):9281–9286. [CrossRef] [Google Scholar]
  16. Zhu Sh-P, Liu Q, Lei Q [et al.] (2018) Probabilistic fatigue life prediction and reliability assessment of a high-pressure turbine disc considering load variations. International Journal of Damage Mechanics 27(10):1569–1588. Available at: https://doi.10.1177/1056789517737132. [CrossRef] [Google Scholar]
  17. Ikpe AE, Owunna I, Ebunilo PO [et al.] (2016) Material Selection for High Pressure (HP) Turbine Blade of Conventional Turbojet Engines. American Journal of Mechanical and Industrial Engineering 1(1):1–9. [Google Scholar]
  18. Fawal S, Kodal A (2021) Overall and component basis performance evaluations for parameters turbojet engines under various optimal operating conditions. Aerospace Science and Technology, 117 (2021): 1-14. https://doi.org/10.1016/j.ast.2021.106943. [CrossRef] [Google Scholar]
  19. Waligórski M, Batura K, Kucal K, Merkisz J (2020) Empirical assessment of thermodynamic processes of a turbojet engine in the process values field using vibration. Measurement 158:107702. [CrossRef] [Google Scholar]
  20. Ablyalimov O. S. (2021) Research of the efficiency of locomotive UzTE16M3 operation and tractive qualities of the rail track profile Marokand -Navoi line of Uzbek railway. Journal “Modern Problems of Russian Transport Complex”. 2021, Vol. 11, No. 1 pp. 18-28 DOI: 10.18503/2222-9396-2021-11-1-18-28. [Google Scholar]
  21. Ablyalimov O. S. (2016) The effectiveness evaluation of the diesel locomotives 3ТЕ10М utilization between Marokand -Kattakurgan on the Uzbek railways. Journal “Modern Problems of Russian Transport Complex”. 2016, Vol. 6, No. 2 pp. 16-22 [Google Scholar]
  22. Ablyalimov, O., Khamidov, O., Domanov, K. (2023). Determination of Locomotive Traction Efficiency on the Section of Marokand-Kattakurgan of Uzbek Railway. In: Guda, A. (eds) Networked Control Systems for Connected and Automated Vehicles. NN 2022. Lecture Notes in Networks and Systems, vol 509. Springer, Cham. pp. 671-680 https://doi.org/10.1007/978-3-031-11058-0 67. [CrossRef] [Google Scholar]
  23. Ablyalimov O. S. (2018) Analysis of the efficiency of transportation work of 3VL80S electric locomotives at the Kattakurgan -Navoi section of the Uzbek railway. Journal “Modern technologies. System analysis. Modeling”. 2018, no. 4(60) рр. 70-79 DOI: 10.26731/1813-9108.2018.4(60).70-79. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.