Open Access
Issue
E3S Web of Conf.
Volume 402, 2023
International Scientific Siberian Transport Forum - TransSiberia 2023
Article Number 05017
Number of page(s) 9
Section Solar Energy Conversion, Sustainable Energy and Smart Grid
DOI https://doi.org/10.1051/e3sconf/202340205017
Published online 19 July 2023
  1. Gopiya Naik, S., Khatod, D.K., Sharma, M.P.: Optimal allocation of combined DG and capacitor for real power loss minimization in distribution networks. Int. J. Electr. Power Energy Syst. (2013). https://doi.org/10.1016/j.ijepes.2013.06.008. [Google Scholar]
  2. Song, Y.H., Wang, G.S., Johns, A.T., Wang, P.Y.: Distribution network reconfiguration for loss reduction using fuzzy controlled evolutionary programming. IEE Proc. Gener. Transm. Distrib. (1997). https://doi.org/10.1049/ip-gtd:19971101. [Google Scholar]
  3. A. Kurbanov, M. Khasanov, A. Suyarov, U. Jalilov, B. Narimonov, A. Boliev, An Appropriate Wind Model for The Reliability Assessment of Incorporated Wind Power in Power Generation System, E3S Web of Conferences, vol 264, EDP Sciences, 2021. [Google Scholar]
  4. Merlin, A., Back, H.: Search for a minimal-loss operating spanning tree configuration in an urban power distribution system. Fifth Power Syst. Comput. Conf. (1975). [Google Scholar]
  5. Civanlar, S., Grainger, J.J., Yin, H., Lee, S.S.H.: Distribution Feeder Reconfiguration for Loss Reduction. IEEE Trans. Power Deliv. (1988). https://doi.org/10.1109/61.193906. [Google Scholar]
  6. Shirmohammadi, D., Hong, H.W.: Reconfiguration of electric distribution networks for resistive line losses reduction. IEEE Trans. Power Deliv. (1989). https://doi.org/10.1109/61.25637. [Google Scholar]
  7. Baran, M.E., Wu, F.F.: Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Deliv. (1989). https://doi.org/10.1109/61.25627. [Google Scholar]
  8. Zhu, J.Z.: Optimal reconfiguration of electrical distribution network using the refined genetic algorithm. Electr. Power Syst. Res. (2002). https://doi.org/10.1016/S0378-7796(02)00041-X. [Google Scholar]
  9. Srinivasa Rao, R., Narasimham, S.V.L., Ramalinga Raju, M., Srinivasa Rao, A.: Optimal network reconfiguration of large-scale distribution system using harmony search algorithm. IEEE Trans. Power Syst. (2011). https://doi.org/10.1109/TPWRS.2010.2076839. [Google Scholar]
  10. Liu, K.Y., Sheng, W., Liu, Y., Meng, X.: A network reconfiguration method considering data uncertainties in smart distribution networks. Energies. (2017). https://doi.org/10.3390/en10050618. [Google Scholar]
  11. Mohamed Imran, A., Kowsalya, M.: A new power system reconfiguration scheme for power loss minimization and voltage profile enhancement using Fireworks Algorithm. Int. J. Electr. Power Energy Syst. (2014). https://doi.org/10.1016/j.ijepes.2014.04.034. [Google Scholar]
  12. Abdelaziz, A.Y., Mohamed, F.M., Mekhamer, S.F., Badr, M.A.L.: Distribution system reconfiguration using a modified Tabu Search algorithm. Electr. Power Syst. Res. (2010). https://doi.org/10.1016/j.epsr.2010.01.001. [Google Scholar]
  13. Su, C.T., Chang, C.F., Chiou, J.P.: Distribution network reconfiguration for loss reduction by ant colony search algorithm. Electr. Power Syst. Res. (2005). https://doi.org/10.1016/j.epsr.2005.03.002. [Google Scholar]
  14. Olamaei, J., Niknam, T., Arefi, S.B.: Distribution feeder reconfiguration for loss minimization based on modified honey bee mating optimization algorithm. In: Energy Procedia (2012). https://doi.org/10.1016/j.egypro.2011.12.934. [Google Scholar]
  15. Wang, C., Cheng, H.Z.: Optimization of network configuration in large distribution systems using plant growth simulation algorithm. IEEE Trans. Power Syst. (2008). https://doi.org/10.1109/TPWRS.2007.913293. [Google Scholar]
  16. Zhang, D., Fu, Z., Zhang, L.: An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems. Electr. Power Syst. Res. (2007). https://doi.org/10.1016/j.epsr.2006.06.005. [Google Scholar]
  17. Nayak, M.R.: Optimal feeder reconfiguration of distribution system with distributed generation units using HC-ACO. Int. J. Electr. Eng. Informatics. (2014). https://doi.org/10.15676/ijeei.2014.6.1.8. [Google Scholar]
  18. Rajaram, R., Sathish Kumar, K., Rajasekar, N.: Power system reconfiguration in a radial distribution network for reducing losses and to improve voltage profile using modified plant growth simulation algorithm with Distributed Generation (DG). Energy Reports. (2015). https://doi.org/10.1016/j.egyr.2015.03.002. [Google Scholar]
  19. Kamel, S., Hamour, H., Nasrat, L., Yu, J., Xie, K., Khasanov, M.: Radial Distribution System Reconfiguration for Real Power Losses reduction by Using Salp Swarm Optimization Algorithm. In: 2019 IEEE PES Innovative Smart Grid Technologies Asia, ISGT 2019 (2019). https://doi.org/10.1109/ISGT-Asia.2019.8881446. [Google Scholar]
  20. Dogan, A., Alci, M.: Simultaneous optimization of network reconfiguration and DG installation using heuristic algorithms. Elektron. ir Elektrotechnika. (2019). https://doi.org/10.5755/j01.eie.25.1.22729. [Google Scholar]
  21. Venkatesh, B., Ranjan, R.: Optimal radial distribution system reconfiguration using fuzzy adaptation of evolutionary programming. Int. J. Electr. Power Energy Syst. (2003). https://doi.org/10.1016/S0142-0615(03)00046-2. [Google Scholar]
  22. Peraza-Vázquez H. et al. A bio-inspired method for engineering design optimization inspired by dingoes hunting strategies. Mathematical Problems in Engineering (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.