Open Access
Issue
E3S Web of Conf.
Volume 402, 2023
International Scientific Siberian Transport Forum - TransSiberia 2023
Article Number 07020
Number of page(s) 11
Section High-Performance Buildings, Energy Modeling, Heat & Mass Transfer
DOI https://doi.org/10.1051/e3sconf/202340207020
Published online 19 July 2023
  1. M.V.Sukhoterin, S.O. Baryshnikov, T.P. Knysh, R.A. Abdikarimov, Natural oscillations of a rectangular plates with two adjacent edges clamped. Magazine of Civil Engineering. 2018. 82(6). Pp. 81–94. doi: 10.18720/MCE.82.8. [Google Scholar]
  2. M.V.Sukhoterin, S.O.Baryshnikov, T.Knysh and E.Rasputina. Stability of rectangular cantilever plates with high elasticity, E3S Web of Conferences, Volume 244, 2021, XXII International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies (EMMFT-2020), https://doi.org/10.1051/e3sconf/202124404004. [CrossRef] [EDP Sciences] [Google Scholar]
  3. M.V.Sukhoterin, V.Mikhail; Knysh.P.Tatiana; Pastushok, M.Elena; R.A.Abdikarimov. St. Petersburg State Polytechnical University Journal. Physics and Mathematics; St. Petersburg 14, 2, (2021): 38. https://DOI:10.18721/JPM.14204 [Google Scholar]
  4. S.Ullah., J.Zhou, J.Zhang, C.Zhou, H.Wang, Y.Zhong, B.Wang, Li R. New analytic shear buckling solution of clamped rectangular plates by a two-dimensional generalized finite integral trans-form method // International Journal of Structur-al Stability and Dynamics. 2020. Vol. 20. No. 02. P. 2071002. https://doi.org/10.1142/S0219455420710029 [CrossRef] [Google Scholar]
  5. D. Pawlus. “Dynamic response of three-layer annular plate with damaged composite facings,” (Arch Mech Eng vol. 2018), Pp. 65-83. https://doi:10.1088/1757-899X/883/1/012058 [Google Scholar]
  6. D. Pawlus. “Dynamic stability of three-layered annular plates with wavy forms of buckling,” (Acta Mech 2015), pp. 216-123. https://DOI:10.1088/1757-899X/883/1/012058 [Google Scholar]
  7. R.A.Abdikarimov, M.Amabili, N.I.Vatin, D.Khodzhaev. Dynamic Stability of Orthotropic Viscoelastic Rectangular Plate of an Arbitrarily Varying Thickness. Appl.Sci. 2021, 11, 6029. https://doi.org/10.3390/app11136029 [CrossRef] [Google Scholar]
  8. R.A.Abdikarimov, N.I Vatin, B.Normuminov and D.Khodzhaev. Vibrations of a viscoelastic isotropic plate under periodic load without considering the tangential forces of inertia, Journal of Physics: Conference Series 1928 (2021) 012037, https://doi:10.1088/1742-6596/1928/1/012037 [CrossRef] [Google Scholar]
  9. M. Mirsaidov, K. Mamasoliev,”Contact Interactions of Multi-Layer Plates with a Combined Base” (AIP Conference Proceedings 2637, 050001, 2022) Pp. 1-12. https://doi.org/10.1063/5.0118870 [Google Scholar]
  10. M. Mirsaidov. K. Mamasoliev, K. Ismayilov. “Bending of Multilayer Slabs Lying on Elastic Half-Space, Considering Shear Stresses” (Lecture Notes in Civil Engineering Proceedings of MPCPE 2021, 2022) Pp. 93-107. https://doi.org/10.1007/978-3-030-85236-8_8 [Google Scholar]
  11. M.M.Mirsaidov, K.Mamasoliev, “Contact interaction of multilayer slabs with an inhomogeneous base” (Magazine of Civil Engineering 115(7). Article No. 11504, 2022) Pp.11504-11504. DOI: 10.34910/MCE.115.4. [Google Scholar]
  12. M.M. Mirsaidov, Q. Mamasoliev. Contact problems of multilayer slabs interaction on an elastic foundation . IOP Conference Series: Earth and Environmental Science, 2020, 614(1), 012089. DOI: 10.1088/1755-1315/614/1/012089 [CrossRef] [Google Scholar]
  13. Y.Y. Tyukalov. Magazine of Civil Engineering. (2016),67(7) pp. 39-53 https://doi.org/10.5862/MCE.67.5 [Google Scholar]
  14. Y.Y. Tyukalov. Magazine of Civil Engineering. (2019). 89(5). pp.61-68 https://doi.org/10.1063/5.0118598 [Google Scholar]
  15. V.I. Morozov, E.K. Opbul, Van Phuc, P. “Behaviour of axisymmetric thick plates resting against conical surface,” Magazine of Civil Engineering. 2019. 86(2). pp. 92–104 DOI 10.23968/1999-5571-2019-16-5-90-96 [Google Scholar]
  16. M.V. Sukhoterin, S.O. Baryshnikov, T.P. Knysh. “Stress-strain state of clamped rectangular Reissner plates,” Magazine of Civil Engineering. No. 8. (2017), Pp. 225–240. doi: 10.18720/MCE.76.20 [Google Scholar]
  17. M.M.Mirsaidov, M.K.Usarov, and G.I.Mamatisaev. “Calculation methods for plate and beam elements of box-type structure of building,” E3S Web of Conferences 264, 03030 (2021) // https://doi.org/10.1007/978-3-030-85236-8_37 . [CrossRef] [EDP Sciences] [Google Scholar]
  18. M.K.Usarov; G.I.Mamatisaev; D.M.Usarov Calculation of the box structure of large-panel buildings // AIP Conference Proceedings 2612, 040014 (2023) https://doi.org/10.1063/5.0116871 [CrossRef] [Google Scholar]
  19. Makhamatali Usarov, Giyosiddin Mamatisaev, Davronbek Usarov., Calculation of compelled fluctuations of panel buildings E3S Web of Conferences 365 CONMECHYDRO - 2022, 02002 (2023) https://doi.org/10.1051/e3sconf/202336502002 [Google Scholar]
  20. M K Usarov and G I Mamatisaev. Calculation on seismic resistance of box-shaped structures of large-panel buildings//IOP Conf. Series: Materials Science and Engineering 971 (2020) 032041//doi:10.1088/1757-899X/971/3/032041 [Google Scholar]
  21. Usarov Makhamatali and Usanov Furqat On solution of the problem of bending and vibrations of thick plates on the basis of the bimoment theory//Cite as: AIP Conference Proceedings 2637, 030016 (2022); https://doi.org/10.1063/5.0118598 [CrossRef] [Google Scholar]
  22. M.M.Mirsaidov, M.K.Usarov, “Bimoment theory construction to assess the stress state of thick orthotropic plates,” (IOP Conference Series: Earth and Environmental Science, 2020, 614(1)), рр. 012090. https //doi:10.1088/1755-1315/614/1/012090 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.