Open Access
Issue
E3S Web of Conf.
Volume 402, 2023
International Scientific Siberian Transport Forum - TransSiberia 2023
Article Number 11010
Number of page(s) 12
Section Manufacturing and Processing of Materials for Transport Industry
DOI https://doi.org/10.1051/e3sconf/202340211010
Published online 19 July 2023
  1. Yu.P. Artyukhin, S.A. Malkin, Solution of BEM contact problems of interaction of plates with rigid bodies. XX International Conference. Mathematical modeling in continuum mechanics. Methods of boundary and finite elements. Proceedings,vol. 2. St. Petersburg, pp. 39-44 (2003) [Google Scholar]
  2. Yu.P. Artyukhin, A.P. Gribov, Solving of nonlinear deformation problems of plates and shallow shells by the boundary elements method (Kazan, Fen, 2002) [Google Scholar]
  3. S.G. Lehnitsky, Anisotropic plates (Moscow, OGIZ-Gostekhizdat, 1947) [Google Scholar]
  4. M.S. Kornishin, Nonlinear problems of the plates and shallow shells theory and methods of their solution (Moscow, Nauka, 1964) [Google Scholar]
  5. V.P. Shevchenko, Integral transformations in the theory of plates and shells (Donetsk, Donetsk State University, 1977) [Google Scholar]
  6. P.G. Velikanov,The boundary integral equations method for solving isotropic plates bending problems lying on a complex two-parameter elastic base. News of Saratov University. Mathematics series. Mechanics. Informatics, Vol. 8, issue 1, pp. 36-42.(2008) [CrossRef] [Google Scholar]
  7. N.I. Kukanov, P.G. Velikanov,Temperature bending of single-connected and multi-connected isotropic plates by the indirect boundary elements method. Actual problems of modern science: Proceedings of the 2nd International Forum. Natural sciences, 1-3, pp. 178-183 (2006) [Google Scholar]
  8. B.C. Wu, N.J. Altiero, Computer Methods in Applied Mechanics and Engineering 25, 343-353 (1981) [CrossRef] [Google Scholar]
  9. G. Shi, G. Bezine, Journal of Composite Materials 22,694-716 (1988) [Google Scholar]
  10. E.L. Albuquerque , P. Sollero , W.S. Venturini , M.H. Aliabadi ,International Journal of Solids and Structures 43(14)(15), 4029-4046(2006) [CrossRef] [Google Scholar]
  11. I.N. Guryanov, Yu.P. Artyukhin, Fundamental solution of the plane problem and the bending plates problem of an anisotropic body (Kazan, KSU, 1994) [Google Scholar]
  12. V.S. Levada, Pridneprovsky Scientific Bulletin 4,8 (1996) [Google Scholar]
  13. P.G. Velikanov, N.I. Kukanov, D.M. Khalitova,Nonlinear deformation of a cylindrical panel of step-variable stiffness on an elastic base by the boundary elements method. Actual problems of continuum mechanics-2020, pp. 111-115(2020) [Google Scholar]
  14. P.G. Velikanov, D.M. Khalitova, Bulletin of Samara University. Natural Science series 27(2), pp. 48-61(2021) [Google Scholar]
  15. P.G. Velikanov, N.I. Kukanov, D.M. Khalitova, Bulletin of Samara University. Natural Science series 27(2), 33-47(2021) [Google Scholar]
  16. P.G. Velikanov, Yu.P. Artyukhin, N.I. Kukanov,Bending of an anisotropic plate by the method of boundary elements. Actual problems of continuum mechanics-2020. Kazan, Kazan University-Publishing House of the Academy of Sciences of the Republic of Tatarstan, pp. 105-111 (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.