Open Access
Issue |
E3S Web Conf.
Volume 403, 2023
XII International Scientific and Practical Forum “Environmentally Sustainable Cities and Settlements: Problems and Solutions” (ESCP-2023)
|
|
---|---|---|
Article Number | 08007 | |
Number of page(s) | 13 | |
Section | Development of Sustainable Cities: Economic, Social and Humanitarian Aspects | |
DOI | https://doi.org/10.1051/e3sconf/202340308007 | |
Published online | 25 July 2023 |
- Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A Survey of the Recent Architectures of Deep Convolutional Neural Networks. Artif. Intell. Rev. 53, 5455–5516 (2019). https://doi.org/10.1007/s10462-020-09825-6. [Google Scholar]
- Wu, Y., Zhang, Y.: Mixing Deep Visual and Textual Features for Image Regression BT - Intelligent Systems and Applications. Presented at the (2021). [Google Scholar]
- Koumarelas, I., Jiang, L., Naumann, F.: Data Preparation for Duplicate Detection. J. Data Inf. Qual. 12, (2020). https://doi.org/10.1145/3377878. [Google Scholar]
- Welcome to Python.org. [Google Scholar]
- Chowdhury, I., Moeid, A., Hoque, E., Kabir, M.A., Hossain, M.S., Islam, M.M.: Designing and Evaluating Multimodal Interactions for Facilitating Visual Analysis With Dashboards. IEEE Access. 9, 60–71 (2021). https://doi.org/10.1109/ACCESS.2020.3046623. [CrossRef] [Google Scholar]
- ur Rehman, M.H., Liew, C.S., Abbas, A., Jayaraman, P.P., Wah, T.Y., Khan, S.U.: Big Data Reduction Methods: A Survey. Data Sci. Eng. 1, 265–284 (2016). https://doi.org/10.1007/s41019-016-0022-0. [CrossRef] [Google Scholar]
- Pandas - Python Data Analysis Library, https://pandas.pydata.org/, last accessed 2021/01/20. [Google Scholar]
- NumPy, https://numpy.org/, last accessed 2021/01/20. [Google Scholar]
- Os — Miscellaneous operating system interfaces — Python 3.9.1 documentation, https://docs.python.org/3/library/os.html, last accessed 2021/01/20. [Google Scholar]
- Adadi, A., Berrada, M.: Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access. 6, 52138–52160 (2018). https://doi.org/10.1109/ACCESS.2018.2870052. [CrossRef] [Google Scholar]
- Gong, Y., Wang, L., Guo, R., Lazebnik, S.: Multi-scale Orderless Pooling of Deep Convolutional Activation Features BT - Computer Vision - ECCV 2014. Presented at the (2014). [Google Scholar]
- Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 818–833. Springer Verlag (2014). https://doi.org/10.1007/978-3-319-10590-153. [Google Scholar]
- Lee, J.H., Wagstaff, K.L.: Visualizing image content to explain novel image discovery. Data Min. Knowl. Discov. 34, 1777–1804 (2020). https://doi.org/10.1007/s10618-020-00700-0. [CrossRef] [Google Scholar]
- Geng, Q., Zhou, Z., Cao, X.: Survey of recent progress in semantic image segmentation with CNNs. Sci. China Inf. Sci. 61, 51101 (2017). https://doi.org/10.1007/s11432-017-9189-6. [Google Scholar]
- Microsoft Cognitive Toolkit - Cognitive Toolkit - CNTK https://docs.microsoft.com/en-us/cognitive-toolkit/, last accessed 2022/10/14. [Google Scholar]
- TensorFlow. https://www.tensorflow.org/, last accessed 2022/11/14 [Google Scholar]
- Caffe | Deep Learning Framework https://caffe.berkeleyvision.org/, last accessed 2021/01/14. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.