Open Access
Issue
E3S Web of Conf.
Volume 405, 2023
2023 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2023)
Article Number 01011
Number of page(s) 11
Section Agrochemistry
DOI https://doi.org/10.1051/e3sconf/202340501011
Published online 26 July 2023
  1. F. Accoe, P. Boeckx, X. Videla, I. Pino, G. Hofman, O. Van Cleemput, Estimation of grossnitrogen transformations and nitrogen retention in grassland soils using FLUAZ Soil Sci. Soc. Am. J. (2005);69: 1967–1976. [CrossRef] [Google Scholar]
  2. HAH. Akram, The impact of soil texture on nitrates leaching into groundwater in the North Governorate, Gaza Strip. J. Soc. Sci.(2005); 38:1–37. [Google Scholar]
  3. Atsushi Mochizuki, Koki Homma, Takeshi Horie, Tatsuhiko Shiraiwa, EikoWatastsu Nopporn Supap, Chamnean Thongthai, Increased Productivity of Rain fed low land rice by incorporation of pond sediments in Northeast Thailand. Field Crop Res. (2006);96:422–427. [CrossRef] [Google Scholar]
  4. M. Benkhelifa, M. Belkhodja, Y. Daoud, D. Tessier Effect of Maghnianbentonite onphysical properties of sandy soils under semi arid Mediterranean Climate. Pak.J.Biol.Sci. (2008):11: 17–21. [CrossRef] [PubMed] [Google Scholar]
  5. https://doi.org/10.1007/s42452-021-04521-8. [Google Scholar]
  6. E. Blanchart, A. Albrecht, M. Bernoux, A. Brauman, JL. Chotte, C. Feller, F. Gany, E. Hien, R. Manlay, D. Masse, S. Sall, C. Villenave Organic matter and biofunctioning in tropicalsandy soils and implications for its management, In ‘Management of Tropical Sandysoils for Sustainable Development, Proceedings of the International Conference on the Management of Tropical Sandy Soils, KhonKaen, Thailand, Nov. (2005), pp.224–241. [Google Scholar]
  7. E. W. Boyer, C. L. Goodale, N.A. Jaworski, R.W. Howarth Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the Northeastern USA. Biogeochemistry. (2002);57/58, pp.137–169. [CrossRef] [Google Scholar]
  8. G.C. Cargeeg, G.N. Boughton, L.R. Townley, G.R. Smith, S.J. Appleyard, R.A. Smith Perth urban water balance study findings (Western Australian Water Corporation) (2002) Vol. 1. Perth, Australia. [Google Scholar]
  9. K.G. Cassman and D.N. Munns [1980] Nitrogenmineralization as affected by soil moisture, temperature, and depth. Soil Sci. Am.J. (1980);44: 1233–1237. [CrossRef] [Google Scholar]
  10. G.J. Churchmann, A.D. Noble, D.J. Chittleborough Addition of clay and clay minerals to enhance the sequestration of carbon in soils, Australian Regolith and Clays Conference, Mildura, Australia, (2012) pp. 117–120. [Google Scholar]
  11. I.A. Cisse, X. Mao, Nitrate Health effect in drinking water and management for water quality. Environ. Res. (2008);2: 311–316. [Google Scholar]
  12. J. Crocker, R. Poss, C.H. Armann, S. Bhuthornraj Effect of recycled bentonite addition on soil properties, plant growth and nutrient uptake in a tropical sandy soil. Pl. Soil. (2004); 267: 155–163. [Google Scholar]
  13. T.C. Daniel, A.N. Sharpley, J.L. Lemunyon, Agricultural phosphorus and eutrophication: a symposium overview. J. Environ. Qual. (1998);27: 251–257. [CrossRef] [Google Scholar]
  14. F.J. De Ruijter, L.J.M. Boumans, A.L Smit, M. Van den Berg, Nitrate in upper groundwater on farms under tillage as affected by fertilizer use, soil type and groundwater table. Nutrient Cycling in Agroecosystems, (2007);77 (2): 155–167. [CrossRef] [Google Scholar]
  15. H.J. Di, K.C. Cameron, Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutrient Cycling in Agroecosystems. (2002); 64: 237–256. [CrossRef] [Google Scholar]
  16. R. Diercks Alterantive nimlandbau. Stuttgart: Eugen Ulmer. (1983); pp.378. [Google Scholar]
  17. K.G. Dixit, B.R. Gupta, Effect of Farmyard Manure, Chemical and Biofertilizers on Yield and Quality of Rice (Oryzasativa) and Soil Properties. J. Indian Soc. Soil Sci. (2002);48(4):77–780. [Google Scholar]
  18. J. Fan, M. Hao, S. Mathis Accumulation of nitrate-N in the soil profile and its applications for the environment under dry land agriculture in northern China: A review. Canadian J. Soil Sci. (2010); 90(3): 429–440. [CrossRef] [Google Scholar]
  19. FAO. Food and Agricultural Organization. FAO Production Yearbook. FAO. United Nations, Rome (1997): pp 78. [Google Scholar]
  20. P. Fucik, T. Kvitek, M. Lexa, P. Novak, A. Bilkova Assessing the stream water qualitydynamics in connection with land use in agricultural catchments of different scales. Soil &Water Research, (2008);3(3): 98–112. [CrossRef] [Google Scholar]
  21. P. Glibert, J. Harrison, C. Heil, S. Seitzinger Escalating worldwide use of urea-a global change contributing to coastal eutrophication. Biogeochemistry. (2006);77, 441–463. [CrossRef] [Google Scholar]
  22. G.P. Gillman, Hydrotalcite: leaching-retarded fertilizers for sandy soils. In ‘Management of Tropical Sandy Soils for sustainable Development. Proceedings of the International Conference on the Management of Tropical Sandy Soils, KhonKaen, Thailand, Nov. (2005). pp. 107–111. [Google Scholar]
  23. A.A. Gomez, R.A. Gomez, Statistical procedure for agricultural research work emphasize on rice.IRRI, Los Banos, Manila, Philippines, (1984); pp.294. [Google Scholar]
  24. K.A. Ibrahim, M.Y. Naz, S. Shukrullah, Nitrogen Pollution Impact and Remediation through Low Cost Starch Based Biodegradable polymers. Sci Rep .(2020);10, 5927. https://doi.org/10.1038/s41598-020-62793-3 [CrossRef] [PubMed] [Google Scholar]
  25. Janos Katai, Rita Kremper, MagdolnaTallai, The Effect of Zeolite and Bentonite on Some Soil Chemical and Microbiological Characteristics and on the biomass of the test plant. University of Debrecen, Centre for Agricultural Sciences and Engineering, Faculty of Agriculture, Department of Agrochemistry and Soil Science, Debrecen.(2008);8: 71–79. [Google Scholar]
  26. D.R. Keeney, D.W. Nelson, Nitrogen inorganic forms. In. Methods of Soil analysis. Part 2. Chemical and Microbiological Processes. Amer. Soc. Agron., Soil Sci., Soc. (1982). Amer. Madison, WI. [Google Scholar]
  27. A.S. Kharub, S. Chander, Effect of organic farming on yield, quality and soil fertility status under basmati rice (Oryzasativa)-wheat (Tritticumaestivum) cropping system, Indian J.Agron. (2008);53(3): 172–177. [Google Scholar]
  28. Kwame Ampong, Malinda S. Thilakaranthna, Lind YuyaGorim. Understanding the role of humic acids on crop performance and soil health. Font.Agron. (2022); 2(4). https://doi.org/10.3389/fagro.2022.848621. [Google Scholar]
  29. B. Laing, X.Y. Yang, X.H. He, J.B. Zhou, Effects of 17-year fertilization on soil microbial biomass C and N and soluble organic C and N in loessial soil during maize growth. Biol.Fertil.Soils, (2011);47: 121–128. [CrossRef] [Google Scholar]
  30. E.B. Mallory, T.S. Grillin, Impacts of soil amendment history on nitrogen availability frommanure and fertilizer. Soil Sci.Soc. Am. J.(2007);71: 964–973. [CrossRef] [Google Scholar]
  31. I.J. Mangnicent, F.E. Broadbent, Recoveries of tagged N (15N labeled) under somemanagement practices for low land rice. Philippine Agriculture. (1996);60: 367– 377. [Google Scholar]
  32. Mohamed Ali Wahab, Salah Jellali, NaceurJedidi, Ammonium biosorption onto saw dust: FTIR analysis, kinetics and absorption isotherms modeling. Bioresource Tech. (2010);101: 5070–5075. [CrossRef] [Google Scholar]
  33. R. Nandakumar, A. Saravanan, P. Singaram, B. Chandrasekaran, Effect of lignite humicacid on soil nutrient availability at different growth stages of rice grown on vertisols and alfisols. ActaAgronomicaHungarica, (2010);52 (3) :227–235. [Google Scholar]
  34. A.D. Noble, G.P. Gillman, S. Ruaysoongnern, A cation exch;nge index for assessing degradation of acid soil by further acidification under permanent agriculture in the topics. European Journal of Soil Science, (2000); 51: 233–243. [CrossRef] [Google Scholar]
  35. Pathmakumara Jayasingha, A. Pitawala, H.A. Dharmagunawardhana, Fate of UreaFertilizers in Sandy Aquifers: Laboratory and field caze study from Kalpitiya, Sri Lanka. J.Natn. Sci.Foundation. (2013);41(2): 121–129. [Google Scholar]
  36. C.S. Piper, Soil and Plant Analysis. Scientific Publishers. Jodhpur India, (2019). [Google Scholar]
  37. N. Pirmoradian, A.R. Sepaskhah. M. Maftoun, Deficit irrigation and nitrogen effects on nitrogen-use efficiency and grain protein of rice. Agronomic. (2004);24: 143–153. doi 10.1051/agro:2004011. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. N.N. Rabalais, W.J. Wisman, R.E. Turner, D. Justic, B.K.S. Gupta, Q. Dortch. Nutrientchanges in the Mississippi River and system responses on the adjacent continental shelf. Estuaries,(1996);19: 386–407. [CrossRef] [Google Scholar]
  39. E.L. Schmidt. Nitrification in soil, In Nitrogen in Agricultual Soils (F.J.Stevenson, Ed.) American Society of Agronomy, Madison, WI. (1982); P.253–288. [Google Scholar]
  40. S.J. Smith, Soluble organic nitrogen losses associated with recovery of mineralized nitrogen. Soil Sci. Society. Amer. J. (1987);51:1191–1194. [CrossRef] [Google Scholar]
  41. J.R. Simpson, The mechanism of surface nitrate accumulation on a base fallow soil in Uganda. Journal of Soil Science. (2006); 11(1): 45 – 60. [Google Scholar]
  42. S.R. Smith, V. Woods, T.D. Evans, Nitrate dynamics in biosolids – treated soils Influence of biosolids type and soil type. Bioresource Technol. (2006); 66: 139–149. [Google Scholar]
  43. S. Shukla, A. Saxena, Global status of nitrate contamination in groundwater: its occurrence, health impacts, and mitigation measures. In: Hussain CM (ed) Handbook of environmental materials management. Springer, (2018); pp 869–888. https://doi.org/10.1007/978-3-319-58538-3_20-1 [Google Scholar]
  44. D.L. Sparks, C. Chen, The role of mineral complexation and metal redox coupling in carbon cycling and stabilization. In: Functions of Natural Organic Matter in Changing Environment. Springer Netherlands, (2013) ; pp. 7–12. [CrossRef] [Google Scholar]
  45. F.J. Stvenson, In Methods of Soil Analysis, Part 2, C.A. Black. (1965), Am. Soc Agron, Wisconin.p.1409. [Google Scholar]
  46. S. Tahir, P. Marschner. Clay amendment to sandy soil - effect of clay concentration and ped size on nutrient dynamics after residue addition. Journal of Soils and Sediments. (2016); 16:2072–80. doi:10.1007/s11368-016-1406-5 [CrossRef] [Google Scholar]
  47. A.Uwizeye, de Boer IJ MOpio CI, Nitrogen emissions along global livestock supply chains. Nat Food, (2020);1: 437–446. https://doi.org/10.1038/s43016-020-0113. [CrossRef] [Google Scholar]
  48. Z.H. Wang, Sheng Xiu Li, Chapter Three-Nitrate N loss by leaching and surface runoff in agricultural land : A Global issue (a review). Advances in Agron. (2019);156: 159–217. [CrossRef] [Google Scholar]
  49. M. Ward, R. Jones, J. Brender, T. de Kok, P. Weyer, B. Nolan, C. Villanueva and S. van Breda, Drinking water nitrate and human health: an updated review Int. J. Environ. Res. Public Health. (2018): 15 1557. [CrossRef] [Google Scholar]
  50. C.P. Webster, M.S. Shepherd, K.W.T Goulding, E.I. Lord, Comparison of methods for measuring the reaching of mineral nitrogen from arable land. J. Soil Sci. (1993);44: 49–62. [CrossRef] [Google Scholar]
  51. M.R. Werner, Soil quality characteristics during conservation to organic orchard management. Appl. Soil Ecol. (2007); 5: 151–167. [Google Scholar]
  52. Zahid Hussain, Tang Cheng, Muhammad Irshad, Riaz Ahmed Khattak, Chen Yao, Di Song, Muhammad Mohiuddin, Bentonite clay with different nitrogen sources can effectively reduce nitrate leaching from sandy soil. PLoS One. (2022); 17(12):e0278824. [CrossRef] [PubMed] [Google Scholar]
  53. S. Zeb, A. Waseem, A.H. Malik, Q. Mahmood. Water quality assessment of Siran River, Pakistan. Int’l. J. Phys. Sci., (2011); 6: 7789–7798. [Google Scholar]
  54. B.J. Zebarth, B. Hii, H. Liebcher, K. Chipperfield, J.W. Paul, G. Grove, S.Y. Szeto. Agricultural land use practices and nitrate concentration in the Abbotsford aquifer, British Colombia, Canada. Journal of Agriculture Ecosystem and Environment. (1998);.69(2):99–112. [CrossRef] [Google Scholar]
  55. Q.C. Zhang, G.H. Wang, W.X. Xie. Soil organic N form and N supply as affected by fertilization under intensive rice cropping system. Pedosphere. (2006);16: 345–353. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.