Open Access
Issue
E3S Web of Conf.
Volume 405, 2023
2023 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2023)
Article Number 02008
Number of page(s) 14
Section Renewable Energy & Electrical Technology
DOI https://doi.org/10.1051/e3sconf/202340502008
Published online 26 July 2023
  1. B. Kršák et al., “Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study,” Measurement (Lond.), vol. 91, pp. 276–287, 2016. [Google Scholar]
  2. C. H. Hugenholtz, J. Walker, O. Brown, and S. Myshak, “Earthwork volumetrics with an unmanned aerial vehicle and softcopy photogrammetry,” J. Surv. Eng., vol. 141, no. 1, p. 06014003, 2015. [CrossRef] [Google Scholar]
  3. E. Pontoglio, E. Colucci, A. Lingua, P. Maschio, M. R. Migliazza, and C. Scavia, “UAV and CLOSE-RANGE PHOTOGRAMMETRY to SUPPORT GEO-MECHANICAL ANALYSIS in SAFETY ROAD MANAGEMENT: The ‘vALLONE D‘ELVA’ ROAD. International Archives of the Photogrammetry,” Remote Sensing & Spatial Information Sciences, no. B2, 2020. [Google Scholar]
  4. E. Casella, J. Drechsel, C. Winter, M. Benninghoff, and A. Rovere, “Accuracy of sand beach topography surveying by drones and photogrammetry,” Geo-Mar. Lett., vol. 40, no. 2, pp. 255–268, 2020. [CrossRef] [Google Scholar]
  5. G. Sofia, F. Marinello, and P. Tarolli, “A new landscape metric for the identification of terraced sites: The Slope Local Length of Auto-Correlation (SLLAC),” ISPRS J. Photogramm. Remote Sens., vol. 96, pp. 123–133, 2014. [CrossRef] [Google Scholar]
  6. H. Azpúrua et al., “Cooperative digital magnetic?elevation maps by small autonomous aerial robots,” J. Field Robot., vol. 36, no. 8, pp. 1378–1398, 2019. [CrossRef] [Google Scholar]
  7. H. Obanawa, “Quantitative measurement of the topographic change at overhanging sea cliff with small UAV survey system,” in 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2015. [Google Scholar]
  8. I. Colombia and P. Molina, “Unmanned aerial systems for photogrammetry and remote sensing: A review,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 92, pp. 79–97, 2014. [CrossRef] [Google Scholar]
  9. J.-W. Cho, J.-K. Lee, and J. Park, “Large-scale earthwork progress digitalization practices using series of 3D models generated from UAS images,” Drones, vol. 5, no. 4, p. 147, 2021. [CrossRef] [Google Scholar]
  10. K. L. A. El-Ashmawy, “A comparison between analytical aerial photogrammetry, laser scanning, total station and global positioning system surveys for generation of digital terrain model,” Geocarto Int., pp. 1–9, 2014. [CrossRef] [Google Scholar]
  11. M. Gheisari, J. Irizarry, and B. N. Walker, “UAS4SAFETY: The potential of unmanned aerial systems for construction safety applications,” in Construction Research Congress 2014, 2014. [Google Scholar]
  12. P. Liu et al., “A review of rotorcraft Unmanned Aerial Vehicle (UAV) developments and applications in civil engineering,” Smart Struct. Syst., vol. 13, no. 6, pp. 1065–1094, 2014. [CrossRef] [Google Scholar]
  13. R. R. S. De Melo, D. B. Costa, J. S. Álvares, and J. Irizarry, “Applicability of unmanned aerial system (UAS) for safety inspection on construction sites,” Safety Science, vol. 98, pp. 174–185, 2017. [CrossRef] [Google Scholar]
  14. S. Lee and Y. Choi, “Comparison of topographic surveying results using a fixed-wing and a popular rotary-wing unmanned aerial vehicle (drone),” Tunn. Undergr. Space, vol. 26, no. 1, pp. 24–31, 2016. [CrossRef] [Google Scholar]
  15. S. Lee and Y. Choi, “On-site demonstration of topographic surveying techniques at open-pit mines using a fixed-wing unmanned aerial vehicle (drone),” Tunn. Undergr. Space, vol. 25, no. 6, pp. 527–533, 2015. [CrossRef] [Google Scholar]
  16. S. Mantey and M. S. Aduah, “Comparative analysis of stockpile volume estimation using UAV and GPS techniques,” Ghana Min. J., vol. 21, no. 1, pp. 1–10, 2021. [CrossRef] [Google Scholar]
  17. S. Siebert and J. Teizer, “Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system,” Autom. Constr., vol. 41, pp. 1–14, 2014. [CrossRef] [Google Scholar]
  18. S. Zhou and M. Gheisari, “Unmanned aerial system applications in construction: a systematic review,” Constr. Innov., vol. 18, no. 4, pp. 453–468, 2018. [CrossRef] [Google Scholar]
  19. V. Moudrý, R. Urban, M. Štroner, J. Komárek, J. Brouček, and J. Prošek, “Comparison of a commercial and home-assembled fixed-wing UAV for terrain mapping of a post-mining site under leaf-off conditions,” Int. J. Remote Sens., vol. 40, no. 2, pp. 555–572, 2019. [CrossRef] [Google Scholar]
  20. W. W. Greenwood, J. P. Lynch, and D. Zekkos, “Applications of UAVs in civil infrastructure,” J. Infrastruct. Syst., vol. 25, no. 2, p. 04019002, 2019. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.