Open Access
Issue
E3S Web of Conf.
Volume 405, 2023
2023 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2023)
Article Number 04007
Number of page(s) 22
Section Sustainable Technologies in Construction & Environmental Engineering
DOI https://doi.org/10.1051/e3sconf/202340504007
Published online 26 July 2023
  1. V. Baskar, N. Bolan, S. A. Hoang, P. Sooriyakumar, M. Kumar, L. Singh, & K. H. Siddique. Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review. Sci. Total Environ., 822:153555 (2022). [CrossRef] [Google Scholar]
  2. Pohl. Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water Air Soil Pollut., 231(10), 1-17 (2020). [Google Scholar]
  3. Bashir, L. A. Malik, S. Ahad, T. Manzoor, M. A. Bhat, G. N. Dar, & A. H. Pandith. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ. Chem. Lett., 17(2), 729-754 (2019). [CrossRef] [Google Scholar]
  4. W. S. Chai, J. Y. Cheun, P. S. Kumar, M. Mubashir, Z. Majeed, F. Banat, & P. L. Show. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment applicationJ. Clean. Prod., 296, 126589 (2021). [CrossRef] [Google Scholar]
  5. N. A. Qasem, R. H. Mohammed, & D. U. Lawal. Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water, 4(1), 1-15 (2021). [CrossRef] [Google Scholar]
  6. S. Tyagi, M. Bashir, C. Mohan, & A. Annachhatre. Characterization of Pine Residues from Himalayan Region and Their Use as Copper Adsorbent. Water Air Soil Pollut., 233(6), 1-24 (2022). [CrossRef] [PubMed] [Google Scholar]
  7. P. O. Oladoye. Natural, low-cost adsorbents for toxic Pb (II) ion sequestration from (waste) water: A state-of-the-art review. Chemosphere, 287, 132130 (2022). [CrossRef] [PubMed] [Google Scholar]
  8. Z. Liu, Z. Wang, H. Chen, T. Cai, & Z. Liu. Hydrochar and pyrochar for sorption of pollutants in wastewater and exhaust gas: A critical review. Environ. Pollut., 268, 115910 (2021). [CrossRef] [Google Scholar]
  9. F. Liao, L. Yang, Q. Li, Y. R. Li, L. T. Yang, M. Anas, & D. L. Huang. Characteristics and inorganic N holding ability of biochar derived from the pyrolysis of agricultural and forestal residues in the southern China. J Anal Appl Pyrolysis, 134, 544-551 (2018). [CrossRef] [Google Scholar]
  10. M. Bashir, C. Mohan, S. Tyagi, & A. Annachhatre. Copper removal from aqueous solution using chemical precipitation and adsorption by Himalayan Pine Forest Residue as Biochar. Water Sci. Technol., 86(3), 530-554 (2022). [CrossRef] [PubMed] [Google Scholar]
  11. M. K. Yadav, D. Saidulu, P. S. Ghosal, A. Mukherjee, & A. K. Gupta. A review on the management of arsenic-laden spent adsorbent: Insights of global practices, process criticality, and sustainable solutions. Environ. Technol. Innov., 27, 102500 (2022). [CrossRef] [Google Scholar]
  12. T. S. Singh, & K. K. Pant. Solidification/stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric materials. J. Hazard. Mater., 131(1-3), 29-36 (2006). [CrossRef] [Google Scholar]
  13. Y. Wang, F. Han, & J. Mu. Solidification/stabilization mechanism of Pb (II), Cd (II), Mn (II) and Cr (III) in fly ash based geopolymers. Constr Build Mater., 160, 818-827 (2018). [CrossRef] [Google Scholar]
  14. Guo, B. Liu, J. Yang, & S. Zhang, The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review. J. Environ. Manage., 193, 410-422 (2017). [Google Scholar]
  15. H. Yoon, D. H. Moon, K. W. Kim, K. Y. Lee, J. H. Lee, & M. G. Kim. Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust. J. Environ. Manage., 91(11), 2322-2328 (2010). [CrossRef] [Google Scholar]
  16. Xu, B. Lothenbach, A. Leemann, & F. Winnefeld. Reaction mechanism of magnesium potassium phosphate cement with high magnesium-to-phosphate ratio. Cem Concr Res. 108, 140-151 (2018). [CrossRef] [Google Scholar]
  17. F. Qiao. Reaction mechanisms of magnesium potassium phosphate cement and its application. Dissertation Abstracts International, 226 ISBN: 9781267848444 (2010). [Google Scholar]
  18. M. A. Haque, & B. Chen. Research progresses on magnesium phosphate cement: A review. Constr Build Mater., 211, 885-898 (2019). [CrossRef] [Google Scholar]
  19. X. Cao, R. Ma, Q. Zhang, W. Wang, Q. Liao, S. Sun, & X. Liu. The factors influencing sludge incineration residue (SIR)-based magnesium potassium phosphate cement and the solidification/stabilization characteristics and mechanisms of heavy metals. Chemosphere, 261, 127789 (2020). [CrossRef] [PubMed] [Google Scholar]
  20. W. Y. Xia, Y. S. Feng, F. Jin, L. M. Zhang, & Y. J. Du. Stabilization and solidification of a heavy metal contaminated site soil using a hydroxyapatite-based binder. Constr Build Mater., 156, 199-207 (2017). [CrossRef] [Google Scholar]
  21. J. H. Cho, Y. Eom, & T. G. Lee, Stabilization/solidification of mercury-contaminated waste ash using calcium sodium phosphate (CNP) and magnesium potassium phosphate (MKP) processes. J. Hazard. Mater., 278, 474-482 (2014). [CrossRef] [Google Scholar]
  22. S. Ahmad, R. A. Khushnood, P. Jagdale, J. M. Tulliani, & G. A. Ferro. High performance self-consolidating cementitious composites by using micro carbonized bamboo particles. Mater. Des., 76, 223-229 (2015). [CrossRef] [Google Scholar]
  23. R. A. Khushnood, S. Ahmad, L. Restuccia, C. Spoto, P. Jagdale, J. M. Tulliani, & G. A. Ferro. Carbonized nano/microparticles for enhanced mechanical properties and electromagnetic interference shielding of cementitious materials. Front. Struct. Civ., 10(2), 209-213 (2016). [CrossRef] [Google Scholar]
  24. P. Devi, & A. K. Saroha. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresour. Technol., 162, 308-315 (2014). [CrossRef] [Google Scholar]
  25. S. Zhang, S. Dai, R. B. Finkelman, I. T. Graham, D. French, J. C. Hower, & X. Li, Leaching characteristics of alkaline coal combustion by-products: A case study from a coal-fired power plant, Hebei Province, China. Fuel, 255, 115710 (2019). [CrossRef] [Google Scholar]
  26. Z. Banu, M. S. A. Chowdhury, M. D. Hossain, & K. I. Nakagami, Contamination and ecological risk assessment of heavy metal in the sediment of Turag River, Bangladesh: an index analysis approach. J. water resource prot. 5(2), 28446 (2013). [Google Scholar]
  27. Kumar, M., & Puri, A. A review of permissible limits of drinking water. Indian J. Occup, 16(1), 40 (2012). [CrossRef] [Google Scholar]
  28. USEPA, Risk Assessment Guidance for Superfund, volume1, Human Health Evaluation Manual (Part A). Report EPA/540/1–89/002. US Environmental Protection Agency, Washington, DC (1989). [Google Scholar]
  29. USEPA, Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). Report EPA/540/R/99/005. US Environmental Protection Agency, Washington, DC (2004). [Google Scholar]
  30. C. X. Qian & J. M. Yang, Effect of disodium hydrogen phosphate on hydration and hardening of magnesium potassium phosphate cement. J. Mater. Civ. Eng., 23(10), 1405-1411 (2011). [CrossRef] [Google Scholar]
  31. P. Devi, P. Kothari, & A. K. Dalai, Stabilization and solidification of arsenic and iron contaminated canola meal biochar using chemically modified phosphate binders. J. Hazard. Mater., 385, 121559 (2020). [CrossRef] [Google Scholar]
  32. Y. Li, T. Shi, & B. Chen. Experimental study of dipotassium hydrogen phosphate influencing properties of magnesium phosphate cement. J. Mater. Civ. Eng., 28(4), 04015170 (2016). [CrossRef] [Google Scholar]
  33. J. Shu, L. Cai, J. Zhao, H. Feng, M. Chen, X. Zhang, & R. Liu. A low cost of phosphate-based binder for Mn2+ and NH4+-N simultaneous stabilization in electrolytic manganese residue. Ecotoxicol., 205, 111317 (2020). [CrossRef] [Google Scholar]
  34. M. R. Ahmad, B. Chen, & H. Duan. Improvement effect of pyrolyzed agro-food biochar on the properties of magnesium phosphate cement. Sci. Total Environ., 718, 137422 (2020). [CrossRef] [Google Scholar]
  35. H. T. Kim, & T. G. Lee. A simultaneous stabilization and solidification of the top five most toxic heavy metals (Hg, Pb, As, Cr, and Cd). Chemosphere, 178, 479-485 (2017). [CrossRef] [PubMed] [Google Scholar]
  36. H., Moon, D. Dermatas, & N. Menounou, (2004). Arsenic immobilization by calcium–arsenic precipitates in lime treated soils. Sci. Total Environ., 330(1-3), 171-185. [CrossRef] [Google Scholar]
  37. W. Wanmolee, N. Sosa, A. Junkaew, S. Youngjan, C. Geantet, P. Afanasiev, & P. Khemthong. Phase speciation and surface analysis of copper phosphate on high surface area silica support by in situ XAS/XRD and DFT: Assessment for guaiacol hydrodeoxygenation. Appl. Surf. Sci., 574, 151577 (2022). [CrossRef] [Google Scholar]
  38. M. Rizwan, M. Z. ur Rehman, S. Ali, T. Abbas, A. Maqbool, & A. Bashir Biochar is a potential source of silicon fertilizer: An overview. Biochar from biomass and waste, 225-238, ISBN: 9780128117293 (2019). [Google Scholar]
  39. S. Wagh, S. Y. Jeong, & D. Singh, High strength phosphate cement using industrial byproduct ashes. In Proceedings of the 1st International Conference on High Strength Concrete, 542-553 (1997). [Google Scholar]
  40. Z. Qin, C. Ma, Z. Zheng, G. Long, & B. Chen. Effects of metakaolin on properties and microstructure of magnesium phosphate cement. Constr Build Mater. 234, 117353 (2020). [CrossRef] [Google Scholar]
  41. R. Liu, Y. Yang, & S. Sun, Effect of M/P and borax on the hydration properties of magnesium potassium phosphate cement blended with large volume of fly ash. J. Wuhan Univ. Technol. Mater. Sci. Ed., 33(5), 1159-1167 (2018). [CrossRef] [Google Scholar]
  42. L. Chen, Y. S. Wang, L. Wang, Y. Zhang, J. Li, L. Tong, & D. C. Tsang. Stabilisation/solidification of municipal solid waste incineration fly ash by phosphate-enhanced calcium aluminate cement. J. Hazard. Mater., 408, 124404 (2021). [CrossRef] [Google Scholar]
  43. L. Lv, P. Huang, L. Mo, M. Deng, J. Qian, & A. Wang. Properties of magnesium potassium phosphate cement pastes exposed to water curing: A comparison study on the influences of fly ash and metakaolin. Constr Build Mater., 203, 589-600 (2019). [CrossRef] [Google Scholar]
  44. M. Arthy, & B. R. Phanikumar. Solidification/stabilization of tannery sludge with iron-based nanoparticles and nano-biocomposites. Environ. Earth Sci, 76(4), 1-17 (2017). [CrossRef] [Google Scholar]
  45. Verbinnen, C. Block, J. Van Caneghem, & C. Vandecasteele. Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics. Waste Manage., 45, 407-411 (2015). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.