Open Access
Issue
E3S Web of Conf.
Volume 406, 2023
2023 9th International Conference on Energy Materials and Environment Engineering (ICEMEE 2023)
Article Number 01004
Number of page(s) 10
Section Biological Device and Material Structure Analysis
DOI https://doi.org/10.1051/e3sconf/202340601004
Published online 31 July 2023
  1. Song G, Yang X, Yang Z, Xiao Y. Experimental study on ultra-low initial NOx emission characteristics of Shenmu coal and char in a high temperature CFB with post-combustion. Journal of the Energy Institute 2021;94:310-8. https://doi.org/10.1016/j.joei.2020.09.015 [CrossRef] [Google Scholar]
  2. Sun L, Yan Y, Sun R, Peng Z, Xing C, Wu J. Influence of nozzle height to width ratio on ignition and NOx emission characteristics of semicoke/bituminous coal blends in a 300 kW pulverized coal-fired furnace. Frontiers in Energy 2021;15(2):431-48. https://doi.org/10.1007/s11708-021-0726-3 [CrossRef] [Google Scholar]
  3. Zou H, Liu C, Evrendilek F, He Y, Liu J. Evaluation of reaction mechanisms and emissions of oily sludge and coal co-combustions in O2/CO2 and O2/N2 atmospheres. Renewable Energy 2021;171:1327-43. https://doi.org/10.1016/j.renene.2021.02.069 [CrossRef] [Google Scholar]
  4. Man C, Zhu J, Ouyang Z, Liu J, Lyu Q. Experimental study on combustion characteristics of pulverized coal preheated in a circulating fluidized bed. Fuel Processing Technology 2018;172:72-8. https://doi.org/10.1016/j.fuproc.2017.12.009 [CrossRef] [Google Scholar]
  5. Liu Y, Liu J, Lyu Q, Zhu J, Zhang X, Zhang J, et al. Comparison of oxy-fuel preheated combustion characteristics of high-and low- volatility carbon-based fuels. Fuel 2022;330:125583. https://doi.org/10.1016/j.fuel.2022.125583 [CrossRef] [Google Scholar]
  6. Qi X, Yang Q, Song W, Zhu Z, Lyu Q. Experimental study and theoretical analysis on fluidized activation of coal gasification fly ash from an industrial CFB gasifier. Waste Management 2023;157:82-90. https://doi.org/10.1016/j.wasman.2022.12.010 [CrossRef] [Google Scholar]
  7. Ding H, Ouyang Z, Wang W, Zhang X, Zhu S. Experimental study on the influence of O2/CO2 ratios on NO conversion and emission during combustion and gasification of high-temperature coal char. Fuel 2022;310:122311. https://doi.org/10.1016/j.fuel.2021.122311 [CrossRef] [Google Scholar]
  8. Zhu S, Zhu J, Lyu Q, Pan F, Zhang Y, Liu W. NO emissions under pulverized char combustion in O2/CO2/H2O preheated by a circulating fluidized bed. Fuel 2019;252:512-21. https://doi.org/10.1016/j.fuel.2019.04.153 [CrossRef] [Google Scholar]
  9. Qadi N, Zaini IN, Takahashi F, Yoshikawa K. CO2 Cogasification of Coal and Algae in a Downdraft Fixed-Bed Gasifier: Effect of CO2 Partial Pressure and Blending Ratio. Energy & Fuels 2017;31:2927-33. https://doi.org/10.1021/acs.energyfuels.6b03148 [CrossRef] [Google Scholar]
  10. Mafu LD, Neomagus HWJP, Everson RC, Okolo GN, Strydom CA, Bunt JR. The carbon dioxide gasification characteristics of biomass char samples and their effect on coal gasification reactivity during co-gasification. Bioresource Technology 2018;258:70-8. https://doi.org/10.1016/j.biortech.2017.12.053 [CrossRef] [PubMed] [Google Scholar]
  11. Inayat M, Sulaiman SA, Kurnia JC, Shahbaz M. Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review. Renewable and Sustainable Energy Reviews 2019;105:252-67. https://doi.org/10.1016/j.rser.2019.01.059 [CrossRef] [Google Scholar]
  12. Jeong HJ, Park SS, Hwang J. Co-gasification of coal– biomass blended char with CO2 at temperatures of 900–1100°C. Fuel 2014;116:465-70. https://doi.org/10.1016/j.fuel.2013.08.015 [CrossRef] [Google Scholar]
  13. Marsh H, Mochida I. Catalytic gasification of metallurgical coke by carbon dioxide using potassium salts. Fuel 1981;60(3):231-9. https://doi.org/10.1016/0016-2361(81)90185-X [CrossRef] [Google Scholar]
  14. Masnadi MS, Grace JR, Bi XT, Lim CJ, Ellis N. From fossil fuels towards renewables: Inhibitory and catalytic effects on carbon thermochemical conversion during co-gasification of biomass with fossil fuels. Applied Energy 2015;140:196-209. https://doi.org/10.1016/j.apenergy.2014.12.006 [Google Scholar]
  15. Saber JM, Kester KB, Falconer JL, Brown LF. A mechanism for sodium oxide catalyzed CO2 gasification of carbon. Journal of Catalysis 1988;109(2):329-46. https://doi.org/10.1016/0021-9517(88)90216-3 [CrossRef] [Google Scholar]
  16. Montoya A, Truong TN, Sarofim AF. Application of Density Functional Theory to the Study of the Reaction of NO with Char-Bound Nitrogen during Combustion. The Journal of Physical Chemistry A 2000;104(36):8409-17. https://doi.org/10.1021/jp001045p [CrossRef] [Google Scholar]
  17. Gao Z, Yang W, Ding X, Ding Y, Yan W. Theoretical research on heterogeneous reduction of N2O by char. Applied Thermal Engineering 2017;126:28-36. https://doi.org/10.1016/j.applthermaleng.2017.07.16 6 [CrossRef] [Google Scholar]
  18. Sendt K, Haynes BS. Density functional study of the chemisorption of O2 on the armchair surface of graphite. Proceedings of the Combustion Institute 2005;30(2):2141-9. https://doi.org/10.1016/j.proci.2004.08.064 [CrossRef] [Google Scholar]
  19. Zhao S, Sun R, Bi X, Pan X, Su Y. Density functional theory study of the heterogenous interaction between char-bound nitrogen and CO2 during oxy-fuel coal combustion. Combustion and Flame 2020. https://doi.org/10.1016/j.combustflame.2020.02.026 [Google Scholar]
  20. Zhao D, Liu H, Sun C, Xu L, Cao Q. DFT study of the catalytic effect of Na on the gasification of carbon-CO2. Combustion and Flame 2018;197:471-86. https://doi.org/10.1016/j.combustflame.2018.09.002 [CrossRef] [Google Scholar]
  21. Yang J, Yuan S, Wang S, Yang M, Shen B, Zhang Q, et al. Density Functional Theory Study on the Effect of Sodium on the Adsorption of NO on a Char Surface. Energy & Fuels 2020;34:8726-31. https://doi.org/10.1021/acs.energyfuels.0c00987 [CrossRef] [Google Scholar]
  22. Sathe C, Hayashi J-i, Li C-Z, Chiba T. Release of alkali and alkaline earth metallic species during rapid pyrolysis of a Victorian brown coal at elevated pressures☆. Fuel 2003;82(12):1491-7. https://doi.org/10.1016/S0016-2361(03)00070-X [CrossRef] [Google Scholar]
  23. Wei L, Li Y, Cui B, Yang X. Effect of mineral extraction on the evolution of nitrogen functionalities during coal pyrolysis. Fuel 2021;297:120752. https://doi.org/10.1016/j.fuel.2021.120752 [CrossRef] [Google Scholar]
  24. Zhang L, Zhu W, Wang Z, Yuan M, Wang X, Yang X, et al. Investigation of the synergetic regulation of O2/Ar preheating treatment and sodium salt addition on semichar combustion characteristics. Fuel 2023;338:127269. https://doi.org/10.1016/j.fuel.2022.127269 [CrossRef] [Google Scholar]
  25. Zhang H, Luo L, Liu J, Jiao A, Liu J, Jiang X. Theoretical study on the reduction reactions from solid char(N): The effect of the nearby group and the high-spin state. Energy 2019;189:116286. https://doi.org/10.1016/j.energy.2019.116286 [CrossRef] [Google Scholar]
  26. Hu L, Zhang Y, Zhang H, Wu Y. Catalytic reduction of NO by CO over Fe-doped penta-graphene as a promising catalyst: A density functional study. Molecular Catalysis 2020;496:111194. https://doi.org/10.1016/j.mcat.2020.111194 [CrossRef] [Google Scholar]
  27. Chen P, Fang Y, Wang P, Gu M, Luo K, Fan J. The effect of ammonia co-firing on NO heterogeneous reduction in the high-temperature reduction zone of coal air-staging combustion: Experimental and quantum chemistry study. Combustion and Flame 2022;237:111857. https://doi.org/10.1016/j.combustflame.2021.111857 [CrossRef] [Google Scholar]
  28. Zhang XX, Zhou ZJ, Zhou JH, Liu JZ, Cen KF. A quantum chemistry study of CO and NO desorption from oxidation of nitrogen-containing char by oxygen. Journal of China Coal Society 2011;36(1):129-34(6). https://docserver.ingentaconnect.com/deliver/connect/jccs/02539993/v36n1/s26.pdf?expires=1674801480&id=0000&titleid=72010358&checksum=F11F508039AAAB8E0D8E1CD25786E81B&host=https://www.ingentaconnect.com [Google Scholar]
  29. Pels JR, Kapteijn F, Moulijn JA, Zhu Q, Thomas KM. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 1995;33(11):1641-53. https://doi.org/10.1016/0008-6223(95)00154-6 [CrossRef] [Google Scholar]
  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Fox DJ. Gaussian 09. 2009. https://gaussian.com/glossary/g09/ [Google Scholar]
  31. Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry 2012;33(5):580-92. https://doi.org/10.1002/jcc.22885 [CrossRef] [PubMed] [Google Scholar]
  32. Nzihou A, Stanmore B, Sharrock P. A review of catalysts for the gasification of biomass char, with some reference to coal. Energy 2013;58:305-17. https://doi.org/10.1016/j.energy.2013.05.057 [CrossRef] [Google Scholar]
  33. Wang Z, Zhang L, Zhao Y, Feng S, Ma J, Kong W, et al. Experimental investigation on the evolution characteristics of anthracite-N and semi-coke reactivity under various O2/H2O pre-oxidation atmospheres. Fuel Processing Technology 2021;216:106725. https://doi.org/10.1016/j.fuproc.2021.106725 [CrossRef] [Google Scholar]
  34. Li X, Yu J, Lu Z, Duan J, Fry HC, Gosztola DJ, et al. Photoinduced Charge Transfer with a Small Driving Force Facilitated by Exciplex-like Complex Formation in Metal–Organic Frameworks. Journal of the American Chemical Society 2021;143(37):15286-97. https://doi.org/10.1021/jacs.1c06629 [CrossRef] [PubMed] [Google Scholar]
  35. Olga K, Anna T, Ilya N, Ekaterina K, Tatyana F, Mikhail T, et al. Evaluation of the Antiradical Properties of Phenolic Acids. International Journal of Molecular Sciences 2014;15(9):16351-80. https://doi.org/10.3390/ijms150916351 [CrossRef] [PubMed] [Google Scholar]
  36. Dove PM, Craven CM. Surface charge density on silica in alkali and alkaline earth chloride electrolyte solutions. Geochimica Et Cosmochimica Acta 2005;69(21):4963-70. https://doi.org/10.1016/j.gca.2005.05.006 [CrossRef] [Google Scholar]
  37. Roberts MJ, Everson RC, Domazetis G, Neomagus HWJP, Jones JM, Van Sittert CGCE, et al. Density functional theory molecular modelling and experimental particle kinetics for CO2–char gasification. Carbon 2015;93:295-314. https://doi.org/10.1016/j.carbon.2015.05.053 [CrossRef] [Google Scholar]
  38. Karlström O, Brink A, Hupa M. Desorption kinetics of CO in char oxidation and gasification in O2, CO2 and H2O. Combustion and Flame 2015;162(3):788-96. https://doi.org/10.1016/j.combustflame.2014.08.010 [CrossRef] [Google Scholar]
  39. Zhang L, Sun R, Wang X, Wang Z, Zhu W, Wu J. Experimental and density functional theory investigation of the NO reduction mechanism by semichars preheated in Ar and CO2/Ar atmospheres. Fuel 2022;326:125080. https://doi.org/10.1016/j.fuel.2022.125080 [CrossRef] [Google Scholar]
  40. Fan W, Li Y, Xiao M. Effect of Preoxidation O2 Concentration on the Reduction Reaction of NO by Char at High Temperature. Industrial & Engineering Chemistry Research 2013;52:6101-11. https://doi.org/10.1021/ie400131y [CrossRef] [Google Scholar]
  41. Wang Z-Z, Xu J, Sun R, Zhao Y-Y, Li Y-P, Ismail TM. Investigation of the NO Reduction Characteristics of Coal Char at Different Conversion Degrees under an NO Atmosphere. Energy & Fuels 2017;31(8):8722-32. https://doi.org/10.1021/acs.energyfuels.7b01291 [CrossRef] [Google Scholar]
  42. Ren Q, Chi H, Gao J, Zhang C, Su S, Leong H, et al. Experimental study and mechanism analysis of NO formation during volatile-N model compounds combustion in H2O/CO2 atmosphere. Fuel 2020;273:117722. https://doi.org/10.1016/j.fuel.2020.117722 [CrossRef] [Google Scholar]
  43. Wang Z, Sun R, Zhao Y, Li Y, Ismail TM, Ren X. Investigation of demineralized coal char surface behaviour and reducing characteristics after partial oxidative treatment under an O2 atmosphere. Fuel 2018;233:658-68. https://doi.org/10.1016/j.fuel.2018.06.098 [CrossRef] [Google Scholar]
  44. Wang P, Wang Ca, Yuan M, Wang C, Zhang J, Du Y, et al. Experimental evaluation on co-combustion characteristics of semi-coke and coal under enhanced high-temperature and strong-reducing atmosphere. Applied Energy 2020;260:114203. https://doi.org/10.1016/j.apenergy.2019.114203 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.