Open Access
Issue |
E3S Web of Conf.
Volume 406, 2023
2023 9th International Conference on Energy Materials and Environment Engineering (ICEMEE 2023)
|
|
---|---|---|
Article Number | 01018 | |
Number of page(s) | 4 | |
Section | Biological Device and Material Structure Analysis | |
DOI | https://doi.org/10.1051/e3sconf/202340601018 | |
Published online | 31 July 2023 |
- Anooj E S, Charumathy M, Sharma V, et al. (2021). Nanogels: An overview of properties, biomedical applications, future research trends and developments. Journal of Molecular Structure, pp.1239: 130446. [Google Scholar]
- Li X, Ouyang Z, Li H, et al. (2021). Dendrimer-decorated nanogels: Efficient nanocarriers for biodistribution in vivo and chemotherapy of ovarian carcinoma. Bioactive materials, 6(10), pp.3244-3253. [CrossRef] [PubMed] [Google Scholar]
- Du X, Peng Y, Zhao C, et al. (2022). Temperature/pH-responsive carmofur-loaded nanogels rapidly prepared via one-pot laser-induced emulsion polymerization. Colloids and Surfaces B: Biointerfaces, pp.217: 112611. [Google Scholar]
- Xu J, Hadjichristidis N. (2023). Heteroatom-containing degradable polymers by ring-opening metathesis polymerization. Progress in Polymer Science: pp.101656. [Google Scholar]
- Yang J, Sun Z, Dou Q, et al. (2023). NIR-light-responsive chemo-photothermal hydrogel system with controlled DOX release and photothermal effect for cancer therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 667, pp.131407. [CrossRef] [Google Scholar]
- Unnithan, Afeesh Rajan, et al. (2019). Biomimetic nanoengineered materials for advanced drug delivery. Elsevier. [Google Scholar]
- Li Y, Maciel D, Rodrigues J, et al. (2015). Biodegradable polymer nanogels for drug/nucleic acid delivery. Chemical reviews,115(16), pp.8564-8608. [CrossRef] [PubMed] [Google Scholar]
- Kabanov A V, Vinogradov S V. (2009). Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angewandte Chemie International Edition, 48(30), pp.5418-5429. [CrossRef] [Google Scholar]
- Soni G, Yadav K S. (2016). Nanogels as potential nanomedicine carrier for treatment of cancer: A mini review of the state of the art. Saudi Pharmaceutical Journal, 24(2), pp.133-139. [CrossRef] [Google Scholar]
- Ferreira S A, Oslakovic C, Cukalevski R, et al. (2012). Biocompatibility of mannan nanogel—safe interaction with plasma proteins. Biochimica et Biophysica Acta (BBA)-General Subjects, 1820(7), pp.1043-1051. [CrossRef] [Google Scholar]
- Ferreira S A, Coutinho P J G, Gama F M. (2010). Self-assembled nanogel made of mannan: synthesis and characterization. Langmuir, 26(13), pp.11413-11420. [CrossRef] [PubMed] [Google Scholar]
- Sihorkar V, Vyas S P. (2001). Potential of polysaccharide anchored liposomes in drug delivery, targeting and immunization. J Pharm Pharm Sci, 4(2). pp.138-158. [PubMed] [Google Scholar]
- Rabyk M, Galisova A, Jiratova M, et al. (2018). Mannan-based conjugates as a multimodal imaging platform for lymph nodes. Journal of Materials Chemistry B, 6(17), pp.2584-2596. [CrossRef] [PubMed] [Google Scholar]
- Khoee S, Asadi H. (2017). Nanogels: Chemical Approaches to Preparation Concise Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. CRC Press, pp.1007-1034. [CrossRef] [Google Scholar]
- Asadian-Birjand M, Sousa-Herves A, Steinhilber D, et al. (2012). Functional nanogels for biomedical applications. Current medicinal chemistry, 19(29), pp.5029-5043. [CrossRef] [PubMed] [Google Scholar]
- Roux, Emmanuelle, et al. (2002). Steric stabilization of liposomes by pH‐responsive N‐isopropylacrylamide copolymer. Journal of pharmaceutical sciences 91(8), pp.1795-1802. [CrossRef] [PubMed] [Google Scholar]
- Rösler A, Vandermeulen G W M, Klok H A. (2012). Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Advanced drug delivery reviews, 64, pp.270-279. [CrossRef] [Google Scholar]
- Lee I S, Akiyoshi K. (2004). Single molecular mechanics of a cholesterol-bearing pullulan nanogel at the hydrophobic interfaces. Biomaterials,25(15), pp.2911-2918. [CrossRef] [PubMed] [Google Scholar]
- Kuroda K, Fujimoto K, Sunamoto J, et al. (2002). Hierarchical self-assembly of hydrophobically modified pullulan in water: gelation by networks of nanoparticles. Langmuir,18(10), pp.3780-3786. [CrossRef] [Google Scholar]
- Cazares-Cortes E, Espinosa A, Guigner J M, et al. (2017). Doxorubicin intracellular remote release from biocompatible oligo (ethylene glycol) methyl ether methacrylate-based magnetic nanogels triggered by magnetic hyperthermia. ACS applied materials & interfaces,9(31), pp.25775-25788. [CrossRef] [PubMed] [Google Scholar]
- Li Y, Maciel D, Rodrigues J, et al. (2015). Biodegradable polymer nanogels for drug/nucleic acid delivery. Chemical reviews,115(16), pp.8564-8608. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.