Open Access
Issue
E3S Web of Conf.
Volume 406, 2023
2023 9th International Conference on Energy Materials and Environment Engineering (ICEMEE 2023)
Article Number 01025
Number of page(s) 5
Section Biological Device and Material Structure Analysis
DOI https://doi.org/10.1051/e3sconf/202340601025
Published online 31 July 2023
  1. Kumari N, Sareen S, Verma M, et al. (2022) Zirconia-based nanomaterials: recent developments in synthesis and applications. Nanoscale Advances, 4: 4210-36. [CrossRef] [PubMed] [Google Scholar]
  2. Yurdakul A,Gocmez H. (2019) One-step hydrothermal synthesis of yttria-stabilized tetragonal zirconia polycrystalline nanopowders for blue-colored zirconia-cobalt aluminate spinel composite ceramics. Ceram. Int., 45: 5398-406. [CrossRef] [Google Scholar]
  3. Song J, Zhang H, Feng Z, et al. (2021) Controllable preparation of 5mol% Y2O3-stabilized tetragonal ZrO2 by hydrothermal method. J. Alloys Compd., 856: 156766. [CrossRef] [Google Scholar]
  4. Jianxing Z, Zongyu F, Jianhui S, et al. (2021) Crystal defects and phase transitions of nanocrystalline yttria-stabilised zirconia induced by high-energy ball milling. Ceram. Int., 47: 16432-40. [CrossRef] [Google Scholar]
  5. Huang Z, Han W, Feng Z, et al. (2019) The effects of precipitants on co-precipitation synthesis of yttria-stabilized zirconia nanocrystalline powders. J. Sol-Gel Sci. Technol., 90: 359-68. [CrossRef] [Google Scholar]
  6. Kim J-R, Myeong W-J,Ihm S-K. (2007) Characteristics in oxygen storage capacity of ceria– zirconia mixed oxides prepared by continuous hydrothermal synthesis in supercritical water. Applied Catalysis B: Environmental, 71: 57-63. [CrossRef] [Google Scholar]
  7. Masoodiyeh F, Mozdianfard MR,Karimi-Sabet J. (2017) Modeling zirconia nanoparticles prepared by supercritical water hydrothermal synthesis using population balance equation. Powder Technol., 317: 264-74. [CrossRef] [Google Scholar]
  8. Reddy Yadav LS, Ramakrishnappa T, Pereira JR, Venkatesh R,Nagaraju G. (2022) Electrical property of zirconium oxide nanoparticle synthesized by hydrothermal method. Materials Today: Proceedings, 49: 686-89. [CrossRef] [Google Scholar]
  9. Siddiqui MRH, Al-Wassil AI, Al-Otaibi AM,Mahfouz RMJMR. (2012) Effects of precursor on the morphology and size of ZrO2 nanoparticles, synthesized by sol-gel method in non-aqueous medium. 15: 986-89. [Google Scholar]
  10. Sarkar D, Mohapatra D, Ray S, et al. (2007) Nanostructured Al2O3–ZrO2 composite synthesized by sol–gel technique: powder processing and microstructure. Journal of Materials Science, 42: 1847-55. [CrossRef] [Google Scholar]
  11. Wang SF, Gu F, Lü MK, et al. (2006) Structure evolution and photoluminescence properties of ZrO2:Eu3+ nanocrystals. Opt. Mater., 28: 1222-26. [CrossRef] [Google Scholar]
  12. Goharshadi EK,Hadadian M. (2012) Effect of calcination temperature on structural, vibrational, optical, and rheological properties of zirconia nanoparticles. Ceram. Int., 38: 1771-77. [CrossRef] [Google Scholar]
  13. Zheng Y, Erwei S, Wenjun L, et al. (2002) Formation of zirconia polymorphs under hydrothermal conditions. Science in China Series E: Technological Sciences, 45: 273-81. [CrossRef] [Google Scholar]
  14. Petit S, Morlens S, Yu Z, et al. (2011) Synthesis and thermal decomposition of a novel zirconium acetato-propionate cluster: [Zr12]. Solid State Sciences, 13: 665-70. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.