Open Access
Issue
E3S Web of Conf.
Volume 406, 2023
2023 9th International Conference on Energy Materials and Environment Engineering (ICEMEE 2023)
Article Number 01032
Number of page(s) 8
Section Biological Device and Material Structure Analysis
DOI https://doi.org/10.1051/e3sconf/202340601032
Published online 31 July 2023
  1. Grove, W. R., “On voltaic series and the combination of gases by platinum,” Philos. Mag. Ser., 127-130 (1839). [Google Scholar]
  2. Park, S., Vohs, J. M. and Gorte, R. J., “Direct oxidation of hydrocarbons in a solid-oxide fuel cell,” Nature, 265-267 (2000). [Google Scholar]
  3. Tollefson, J., “Fuel of the future,” Nature News, 1262-1264 (2010). [Google Scholar]
  4. Orera, V. M., Laguna-Bercero, M. A. and Larrea, A., “Fabrication methods and performance in fuel cell and steam electrolysis operation modes of small tubular solid oxide fuel cells: a review,” Front. energy res., 1-13 (2014). [Google Scholar]
  5. Radenahmad, N., Afif, A., Petra, P. I., Rahman, Smh, Eriksson, S. G. and Azad, A. K., “Proton-conducting electrolytes for direct methanol and direct urea fuel cells – A state-of-the-art review,” Renewable Sustainable Energy Rev., 1347-1358 (2016). [Google Scholar]
  6. Badding, M., Brown, J., Ketcham, T. and Julien, D. S., “Solid oxide fuel cells with symmetric composite electrodes,” U. S. P., 20,010,044,043 (2001). [Google Scholar]
  7. Wei, T., Zhang, Q., Huang, Y. H. and Goodenough, J. B., “Cobalt-based double-perovskite symmetrical electrodes with low thermal expansion for solid oxide fuel cells,” J. Mater. Chem., 225-231 (2012). [Google Scholar]
  8. Ge, B., Ai, D S., Deng, C S., Ma, J T. and Lin, X P., “Synthesis of Sr2Fe1-xMnxNbO6-δ Powders and Their Stability as Electrode of Solid Oxide Electrolysis Cell,” Key Eng. Mater., 512-515 (2012). [Google Scholar]
  9. Gomez, S. Y. and Hotza, D., “Current developments in reversible solid oxide fuel cells,” Renewable Sustainable Energy Rev., 155-174 (2016). [Google Scholar]
  10. Kreuer, K. D., “Fuel Cells,Introduction,” Fuel Cells, 1-7 (2012). [Google Scholar]
  11. Ruiz-Morales, J. C., Marrero-López, D., Canales-Vázquez, J. and Irvine, J. T. S., “Symmetric and reversible solid oxide fuel cells,” RSC Adv., 1403-1414 (2011). [Google Scholar]
  12. Tao, S. and Irvine, J. T. S., “A redox-stable efficient anode for solid-oxide fuel cells,” Nat. Mater., 320-323 (2003). [Google Scholar]
  13. Tao, S. and Irvine, J. T. S., “Investigation of the Mixed Conducting Oxide ScYZT as a Potential SOFC Anode Material,” J. Electrochem. Soc., A497-A503 (2004). [Google Scholar]
  14. Tao, S. and Irvine, J. T. S. “An efficient solid oxide fuel cell based upon single-phase perovskites,” Adv. Mater., 1734-1736 (2005). [Google Scholar]
  15. Kharton, V. V., Tsipis, E. V., Marozau, I. P., Viskup, A. P., Frade, J. R. and Irvine, J. T. S., “Mixed conductivity and electrochemical behavior of (La0.75Sr0.25)(0.95)Cr0.5Mn0.5O3-delta,”Solid State Ionics, 101-103 (2007). [Google Scholar]
  16. He, B., Zhao, L., Song, S. et al. “Sr2Fe1.5Mo0.5O6−δ -Sm0.2Ce0.8O1.9 composite anodes for intermediate-temperature solid oxide fuel cells,” J. Electrochem. Soc., B619-B626 (2012). [Google Scholar]
  17. Zhang, L., Liu, Y., Zhang, Y. et al. “Enhancement in surface exchange coefficient and electrochemical performance of Sr2Fe1.5Mo0.5O6 electrodes by Ce0.8Sm0.2O1.9 nanoparticles,” Electrochem. Commun., 711-713 (2011). [Google Scholar]
  18. Sciazko, A., Yokio, R., Komatsu, Y., Shimura, T. and Shikazono, N., “Evaluation of Strontium Doped Lanthanum Chromium Manganite (LSCM) and Gadolinium Doped Ceria (GDC) Anode with Different Compositions.,” ECS Trans., 1711-1720 (2019). [Google Scholar]
  19. Chen, M., Paulson, S., Thangadurai, V. and Birss, V., “Sr-rich chromium ferrites as symmetrical solid oxide fuel cell electrodes,”J. Power Sources, 68-79 (2013). [Google Scholar]
  20. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. and Shao Horn, Y., “A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles,” Science,1383-1385 (2011). [Google Scholar]
  21. Zhao, S., Gao, L., Lan, C., Pandey, S., Hayase, S. and Ma, T., “First principles analysis of oxygen vacancy formation and migration in Sr2BMoO6 (B = Mg, Co, Ni),” RSC Adv., 31968-31975 (2016). [Google Scholar]
  22. Peña-Martínez, J., Marrero-López, D., Pérez-Coll, D., Ruiz-Morales, J. C. and Núñez, P., “Performance of XSCoF (X = Ba, La and Sm) and LSCrX ‘ (X ‘ = Mn, Fe and Al) perovskite-structure materials on LSGM electrolyte for IT-SOFC,” Electrochim. Acta, 2950-2958 (2007). [Google Scholar]
  23. Zhang, L., Chen, X., Jiang, S. P., He, H. Q. and Xiang, Y. “Characterization of doped La0.7A0.3Cr0.5Mn0.5O3−δ (A=Ca, Sr, Ba) electrodes for solid oxide fuel cells,” Solid State Ionics, 1076-1082 (2009). [Google Scholar]
  24. Bastidas, D. M., Tao, S. W. and Irvine, J. T. S., “A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes,” J. Mater. Chem., 1603-1605 (2006). [Google Scholar]
  25. Liu, Q., Dong, X., Xiao, G. et al. “A Novel Electrode Material for Symmetrical SOFCs,” Adv. Mater., 5478-5482 (2011). [Google Scholar]
  26. Fernández-Ropero, A. J., Porras-Vázquez, J. M., Cabeza, A., Slater, P. R., Marrero-López, D. and Losilla, E. R., “High valence transition metal doped strontium ferrites for electrode materials in symmetrical SOFCs,” J. Power Sources, 405-413 (2014). [Google Scholar]
  27. Doshi, R., Alcock, C. B., Gunasekaran, N. and Carberry, J. J., “Carbon Monoxide and Methane Oxidation Properties of Oxide Solid Solution Catalysts,” J. Catal., 557-563 (1993). [Google Scholar]
  28. Marchetti, L. and Forni, L., “Catalytic combustion of methane over perovskites,” Appl. Catal., B, 179-187 (1998). [Google Scholar]
  29. Zhang, C. M., Zheng, Y., Lin, Y., Ran, R., Shao, Z. P. and Farrusseng, D., “A comparative study of La0.8Sr0.2MnO3 and La0.8Sr0.2Sc0.1Mn0.9O3 as cathode materials of single-chamber SOFCs operating on a methane-air mixture,” J. Power Sources, 225-232 (2009). [Google Scholar]
  30. Sfeir, J., Buffat, P. A., Möckli, P., Xanthopoulos, N., Vasquez, R., Mathieu, H. J., Van herle, J. and Thampi, K.R., “Lanthanum chromite-based catalysts for oxidation of methane directly on SOFC anodes “ J. Catal., 229-244 (2001). [Google Scholar]
  31. Lin, Y., Huang, C., Kim, J. S., Kwak, C., Shao, Z. P., “A new symmetric solid oxide fuel cell with a samaria-doped ceria framework and a silver-infiltrated electrocatalyst,” J. Power Sources, 57-64 (2012). [Google Scholar]
  32. Yasuda, I., Ogasawara, K., Hishinuma, M., Kawada, T. and Dokiya, M., “Oxygen tracer diffusion coefficient of (La, Sr)MnO3 ± δ,” Solid State Ionics, 1197-1201 (1996). [Google Scholar]
  33. Ruiz-Morales, J. C., Canales-Vázquez, J., Peña-Martínez, J., Marrero-López, D. and Núñez, P., “On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O(3-δ) as both anode and cathode material with improved microstructure in solid oxide fuel cells,” Electrochim. Acta, 278-284 (2006). [Google Scholar]
  34. Ruiz-Morales, J. C., Canales-Vázquez, J., Ballesteros-Pérez, B., Peña-Martínez, J., Marrero-López, D., Irvine, J. T. S. and Núñez, P., “LSCM-(YSZ-CGO) composites as improved symmetrical electrodes for solid oxide fuel cells,” J. Eur. Ceram. Soc., 4223-4227 (2007). [Google Scholar]
  35. Zhou, Q., Yuan, C., Han, D., Luo, T., Li, J. L. and Zhan, Z. L., “Evaluation of LaSr2Fe2CrO9-δ as a Potential Electrode for Symmetrical Solid Oxide Fuel Cells,” Electrochim. Acta, 453-458 (2014). [Google Scholar]
  36. Song, H. S., Lee, S., Hyun, S. H., Kim, J. and Moon, J., “Compositional influence of LSM–YSZ composite cathodes on improved performance and durability of solid oxide fuel cells,” J. Power Sources, 25-31 (2009). [Google Scholar]
  37. Lee, D., Jung, I., Lee, S. O., Sang, H. H., Jang, J. H. and Moon, J., “Durable high-performance Sm0.5Sr 0.5 CoO3–Sm0.2 Ce0.8 O 1.9 core–shell type composite cathodes for low temperature solid oxide fuel cells,”, Int. J. Hydrogen Energy, 6875-6881 (2011). [Google Scholar]
  38. Kakihana, M., Arima, M., Yoshimura, M., Ikeda, N. and Sugitani, Y., “Synthesis of high surface area LaMnO3+d by a polymerizable complex method,” J. Alloys Compd., 102–105 (1999). [Google Scholar]
  39. Jung, I., Lee, D., Lee, S. O., Kim, D., Kim, J., Hyun, S. H. and Moon, J., “LSCM-YSZ nanocomposites for a high performance SOFC anode,” Ceram. Int., 9753-9758 (2013). [Google Scholar]
  40. Zhan, Z. L., Bierschenk, D. M., Cronin, J. S., Barnett, S. A., “A reduced temperature solid oxide fuel cell with nanostructured anodes,” Energy Environ. Sci., 3951-3954 (2011). [Google Scholar]
  41. Jiang, S. P., “Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges,” Int. J. Hydrogen Energy, 449-470 (2012). [Google Scholar]
  42. Ding, D., Li, X. X., Lai, S. Y., Gerdes, K. and Liu, M. L., “Enhancing SOFC cathode performance by surface modification through infiltration,” Energy Environ. Sci., 552-575 (2014). [Google Scholar]
  43. Steele, B. C. H., Middleton, P. H. and Rudkin, R. A., “ Material science aspects of SOFC technology with special reference to anode development,” Solid State Ionics, 388-393 (1990). [Google Scholar]
  44. Trovarelli, A., “Catalytic properties of ceria and CeO2-containing materials,” Cat. Rev. – Sci. Eng., 439–520 (1996). [Google Scholar]
  45. Martin, D. and Duprez, D., “Mobility of surface species on oxides .1. Isotopic exchange O-18(2) with O-16 of SiO2, Al2O3, ZrO2, MgO, CeO2, and CeO2-Al2O3. Activation by noble metals. Correlation with oxide basicity,” J. Phys. Chem., 9429-9438 (1996). [Google Scholar]
  46. Li, Y. H., Gerdes, K. and Liu, X. B., “Oxygen Transport Kinetics in Infiltrated SOFCs Cathode by Electrical Conductivity Relaxation Technique,” J. Electrochem. Soc., F554-F559 (2013). [Google Scholar]
  47. Ding, D., Liu, M., Liu, Z., Li, X., Blinn, K., Zhu, X. and Liu, M., “Efficient Electro-Catalysts for Enhancing Surface Activity and Stability of SOFC Cathodes,”Adv. Energy Mater., 1149-1154 (2013). [Google Scholar]
  48. Haider, M. A. and McIntosh, S., “Evidence for Two Activation Mechanisms in LSM SOFC Cathodes,”J. Electrochem. Soc., B1369-B1375 (2009). [Google Scholar]
  49. Jiang, S. P., “Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges,” Int. J. Hydrogen Energy, 449-470 (2012). [Google Scholar]
  50. Liang, F. L., Chen, J., Jiang, S. P., Wang, F.Z., Chi, B., Pu, J. and L. Jian, “High performance solid oxide fuel cells with electrocatalytically enhanced (La, Sr)MnO3 cathodes,” Electrochem. Commun., 1048-1051 (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.