Open Access
Issue |
E3S Web of Conf.
Volume 406, 2023
2023 9th International Conference on Energy Materials and Environment Engineering (ICEMEE 2023)
|
|
---|---|---|
Article Number | 04043 | |
Number of page(s) | 9 | |
Section | Geographic Remote Sensing Application and Environmental Modeling | |
DOI | https://doi.org/10.1051/e3sconf/202340604043 | |
Published online | 31 July 2023 |
- IPCC(2021)Climate Change 2021:The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambrige University Press. [Google Scholar]
- Xue, C., Fang, Z.(2022)Path of carbon emission peaking and carbon neutrality in soil remediation industry. J. Environmental Engineering., 40(8): 231–238. https://doi.org/10.13205/j.hjgc.202208033 [Google Scholar]
- BP(2020)BP Statistical Review of World Energy 2020. London:Whitehouse Associates. [Google Scholar]
- Liu, N., Ma, Z., Kang, J.(2017)A regional analysis of carbon intensities of electricity generation in China. J. Energy Economics., 67: p. 268–277. http://dx.doi.org/10.1016/j.eneco.2017.08.018. [CrossRef] [Google Scholar]
- Liao, C., Wang, S., Zhang, Y., Song, D., Zhang, C.(2019)Driving forces and clustering analysis of provincial-level CO2 emissions from the power sector in China from 2005 to 2015.J.Journal of Cleaner Production., 240: p. 118026. https://doi.org/10.1016/j.jclepro.2019.118026. [CrossRef] [Google Scholar]
- Li, J., Xiang, S.,(2023)Research on Driving Factors of China’s Electric Power Carbon Emissions Based on Spatial Perspective. J. Ecological Economy., 39(05): 19–27. [Google Scholar]
- Sun, X., Lian, W., Wang, B., Gao, T., Duan, H.(2023)Regional differences and driving factors of carbon emission intensity in China’s electricity generation sector. J. Environmental Science and Pollution Research., 30(26): p. 68998–69023. https://doi.org/10.1007/s11356-023-27232-6. [CrossRef] [Google Scholar]
- Xu, G., Feng, S., Guo, S., Ye, X.(2022)The spatial- temporal evolution analysis of carbon emission of China’s thermal power industry based on the three- stage SBM—DEA model. J. International Journal of Climate Change Strategies and Management.,15(2): p. 247–263. https://www.emerald.com/insight/1756-8692.htm. [Google Scholar]
- Li, R., Dong, J., Pa, L.(2021)Driving forces analysis of CO2 emissions from China’s electric industry based on two-phase LMDI decomposition method. J. Journal of renewable and sustainable energy., 13(1). https://doi.org/10.1063/5.0027231. [Google Scholar]
- Zhan, J., Li, J., Wang, P., Hou, G.(2022)A Study on Carbon Peaking Paths in Henan, China Based on Lasso Regression-BP Neural Network Model. J. Environmental Engineering., 40(12): 151–156,164. https://doi.org/10.13205/j.hjgc.202212020. [Google Scholar]
- Yao, M., Wang, N., Lei, Y.(2023)Prediction of carbon peak in Shanghai based on STIRPAT model.J. Journal of Fudan University(Natural Science)., 62(2): 226–237. https://doi.org/10.15943/j.cnki.fdxb-jns.2023.02.005. [Google Scholar]
- Liu, Q., Gu, A., Teng, F., Song, R., Chen, Y.(2017)Peaking China’s CO2 Emissions: Trends to 2030 and Mitigation Potential. J. Energies., 10(2): p. 209. https://doi.org/10.3390/en10020209. [CrossRef] [Google Scholar]
- Deng, X., Sun, H.(2016)Forecast of the Northwest Five Provinces’ Carbon Emissions Based on STIRPAT Model. J. Ecological Economy., 32(09): 36–41. [Google Scholar]
- Liu, C., Qu, J., Ge, Y., Tang, J., Gao, X., Liu, L.(2023)LSTM odel-based prediction of carbon emissions from China’s transportation sector. J. China Environmental Science., 43(5):2574–2582. https://doi.org/10.19674/j.cnki.issn1000-6923.20221207.010. [Google Scholar]
- Pan, C., Wang, B., Hou, X., Gu, Y., Xing, Y., Liu, Y., Wen, W., Fang, J.(2023)Carbon peak path of the Chinese iron and steel industry based on the LMDI−STIRPAT model. J. Chinese Journal of Engineering., 45(06): 1034–1044.https://doi.org/10.13374/j.issn2095-9389.2022.04.25.002; http://cje.ustb.edu.cn. [Google Scholar]
- Li, T., Chen, T., Fan, Y., Chen, F.(2020)Influencing Factors, Industrial Differences and Forecast of Carbon Emissions from Energy Consumption in Anhui Province. J. Journal of Safety and Environment., 20(04): 1494–1503. https://doi.org/10.13637/j.issn.1009–6094. 2019. 1700. [Google Scholar]
- Zhang, J., Liu, L.(2019)A review on the application of domestic regional carbon emission prediction models. J. Environmental Science Survey., 38(4): 15–21. https://doi.org/10.13623/j.cnki.hkdk.2019.04.004. [Google Scholar]
- Liu, Y., Dong, F.(2019)How Industrial Transfer Processes Impact on Haze Pollution in China: An Analysis from the Perspective of Spatial Effects. J. International Journal of Environmental Research and Public Health., 16(3): p. 423https://doi.org/10.3390/ijerph16030423. . [CrossRef] [Google Scholar]
- Shan, T., Li, X., Huang, F., Cheng, C., Zhao, W.(2019)Research on Industrial Structure Transfer under the Coordinated Development of Beijing, Tianjin and Hebei. J. Journal of physics. Conference series., 1176(4): p. 42014. https://doi.org/10.1088/1742-6596/1176/4/042014. [CrossRef] [Google Scholar]
- Lu, Y., Li, X., Yang, Z.(2018)Current situation and peak forecast of energy carbon emissions in Guizhou Province. J. Environmental Science & Technology., 41(11):173–180. https://doi.org/10.19672/j.cnki.1003-6504.2018.11.028. [Google Scholar]
- T. Dietz, E. A. Rosa(1997)Effects of population and affluence on CO2 emissions. J. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA., 94(1): p. 175–9. https://doi.org/10.1073/pnas.94.1.175. [Google Scholar]
- Wang, H, Li, B, M. Q. Khan(2022)Prediction of Shanghai Electric Power Carbon Emissions Based on Improved STIRPAT Model. J. Sustainability., 14(20): p. 13068. https://doi.org/10.3390/su142013068. [CrossRef] [Google Scholar]
- Yin, J., Huang, C.(2022)Analysis on Influencing Factors Decomposition and Decoupling Effect of Power Carbon Emissions in Yangtze River Economic Belt. J. Sustainability (Basel, Switzerland)., 14(22): p. 15373. https://doi.org/10.3390/su142215373. [Google Scholar]
- He, Y., Xing, Y., Ji, Y., Zhang, L.(2020)Research on Influencing Factors and Regional Differences of Carbon Emissions in my country’s Power Industry. J. Journal of Safety and Environment., 20(06):2343–2350. https://doi.org/10.13637/j.issn.1009-6094. 2019. 1395. [Google Scholar]
- Huang, R., Wang, Z.(2013)Influencing factors of carbon emissions from energy consumptions in Chongqing based on STIRPAT model. J. Acta Scientiae Circumstantiae., 33(2) : 602–608. https://doi.org/10.13671/j.hjkxxb.2013.02.029. [Google Scholar]
- Li, X., Zhang, Q.(2019)Influencing Factors and Scenario Prediction of Carbon Emissions from Energy Consumption in Tianjin. J. Arid Zone Research., 36(4): 997–1004. https://doi.org/10.13866/j.azr.2019.04.25. [Google Scholar]
- Zhang, X., Zhai, Z., Tao, T.(2020)Trends and Patterns of Negative Population Growth in China. J. Population Research., 44(03): 3–20. [Google Scholar]
- Pan, D., Li, N., Li, F.(2021)Mitigation strategy of Eastern China based on energy-source carbon emission estimation. J. Acta Scientiae Circumstantiae., 41(3) : 1142–1152. https://doi.org/10.13671/j.hjkxxb.2020.0325. [Google Scholar]
- Wang, C.(2019)Prediction of Energy Demand and CO2 Emissions in Fujian Province Based on Exponential Decomposition and LEAP Model. D. NANJING UNIVERSITY. [Google Scholar]
- Ding, T., Li, W.(2019)Peak Forecast of Carbon Emissions in the Power Industry from the Perspective of Economic Growth and Emission Reduction. J. Science and Technology Management Research., 39(18): 246–253. https://doi.org/10.3969/j.issn.1000–7695. 2019. 18. 032. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.